|
| 1 | +/* |
| 2 | + * java-math-library is a Java library focused on number theory, but not necessarily limited to it. It is based on the PSIQS 4.0 factoring project. |
| 3 | + * Copyright (C) 2018-2024 Tilman Neumann - [email protected] |
| 4 | + * |
| 5 | + * This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License |
| 6 | + * as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. |
| 7 | + * |
| 8 | + * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied |
| 9 | + * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 10 | + * |
| 11 | + * You should have received a copy of the GNU General Public License along with this program; |
| 12 | + * if not, see <http://www.gnu.org/licenses/>. |
| 13 | + */ |
| 14 | +package de.tilman_neumann.jml.factor.pollardRho; |
| 15 | + |
| 16 | +import java.math.BigInteger; |
| 17 | +import java.security.SecureRandom; |
| 18 | + |
| 19 | +import org.apache.logging.log4j.Logger; |
| 20 | +import org.apache.logging.log4j.LogManager; |
| 21 | + |
| 22 | +import de.tilman_neumann.jml.factor.FactorAlgorithm; |
| 23 | +import de.tilman_neumann.jml.gcd.Gcd31; |
| 24 | + |
| 25 | +/** |
| 26 | + * 31-bit implementation of Pollard's Rho method with improvements by Dave McGuigan. |
| 27 | + * |
| 28 | + * Most noteworthy, Dave came up with the second loop in this variant. |
| 29 | + * |
| 30 | + * Other improvements by Dave used here: |
| 31 | + * 1. Use squareAddModN31() instead of nested addModN(squareModN()) |
| 32 | + * 2. Compute the number of steps before each gcd by m=log(n) |
| 33 | + * 3. Use faster "mulMod" |
| 34 | + * |
| 35 | + * @author Dave McGuigan |
| 36 | + */ |
| 37 | +public class PollardRhoTwoLoops31 extends FactorAlgorithm { |
| 38 | + private static final Logger LOG = LogManager.getLogger(PollardRhoTwoLoops31.class); |
| 39 | + private static final boolean DEBUG = false; |
| 40 | + private static final SecureRandom RNG = new SecureRandom(); |
| 41 | + |
| 42 | + private Gcd31 gcdEngine = new Gcd31(); |
| 43 | + |
| 44 | + /** absolute value of the number to factor */ |
| 45 | + private int n; |
| 46 | + |
| 47 | + @Override |
| 48 | + public String getName() { |
| 49 | + return "PollardRhoTwoLoops31"; |
| 50 | + } |
| 51 | + |
| 52 | + @Override |
| 53 | + public BigInteger findSingleFactor(BigInteger N) { |
| 54 | + if (N.bitLength() > 31) { // this check should be negligible in terms of performance |
| 55 | + throw new IllegalArgumentException("N = " + N + " has " + N.bitLength() + " bit, but " + getName() + " only supports arguments <= 31 bit"); |
| 56 | + } |
| 57 | + int factorInt = findSingleFactor(N.intValue()); |
| 58 | + return BigInteger.valueOf(factorInt); |
| 59 | + } |
| 60 | + |
| 61 | + public int findSingleFactor(int nOriginal) { |
| 62 | + this.n = nOriginal<0 ? -nOriginal : nOriginal; // RNG.nextInt(n) below would crash for negative arguments |
| 63 | + |
| 64 | + int gcd; |
| 65 | + int x = RNG.nextInt(n); // uniform random int from [0, n) |
| 66 | + int xs; |
| 67 | + int xxs; |
| 68 | + |
| 69 | + final int m = 32 - Integer.numberOfLeadingZeros(n); // ~ ld(n) |
| 70 | + do { |
| 71 | + int c = RNG.nextInt(n); // uniform random int from [0, n) |
| 72 | + |
| 73 | + int xx = x; |
| 74 | + do { |
| 75 | + xs = x; |
| 76 | + xxs = xx; |
| 77 | + int prod = 1; |
| 78 | + for (int i=0; i<m; i++) { |
| 79 | + x = squareAddModN31(x, c); |
| 80 | + xx = squareAddModN31(xx, c); |
| 81 | + xx = squareAddModN31(xx, c); |
| 82 | + prod = (int) ((((long)x-xx) * prod) % n); |
| 83 | + } |
| 84 | + gcd = gcdEngine.gcd(prod, n); |
| 85 | + if (gcd==n) { |
| 86 | + do { |
| 87 | + xs = squareAddModN31(xs, c); |
| 88 | + xxs = squareAddModN31(xxs, c); |
| 89 | + xxs = squareAddModN31(xxs, c); |
| 90 | + gcd = gcdEngine.gcd(xs-xxs, n); |
| 91 | + } while (gcd == 1); |
| 92 | + } |
| 93 | + } while (gcd==1); |
| 94 | + } while (gcd==n); // leave loop if factor found; otherwise continue with a new random c |
| 95 | + if (DEBUG) LOG.debug("Found factor of " + nOriginal + " = " + gcd); |
| 96 | + return gcd; |
| 97 | + } |
| 98 | + |
| 99 | + /** |
| 100 | + * x^2+c modulo N. |
| 101 | + * @param x |
| 102 | + * @return |
| 103 | + */ |
| 104 | + private int squareAddModN31(int x, int c) { |
| 105 | + // internal computation must be long, not only for the multiplication, but also for the addition of 31 bit numbers |
| 106 | + return (int) (((long)x*x+c) % n); |
| 107 | + } |
| 108 | +} |
0 commit comments