Skip to content

Update to the [email protected] interface #2506

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 25 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
ed6946c
update to match the [email protected] interface
Red-Portal Mar 14, 2025
a94269d
run formatter
Red-Portal Mar 14, 2025
a4711a9
run formatter
Red-Portal Mar 14, 2025
3f8068b
run formatter
Red-Portal Mar 14, 2025
222a638
run formatter
Red-Portal Mar 14, 2025
57097f5
run formatter
Red-Portal Mar 14, 2025
a42eea8
run formatter
Red-Portal Mar 14, 2025
798f319
run formatter
Red-Portal Mar 14, 2025
69a4972
run formatter
Red-Portal Mar 14, 2025
cbcb8b5
run formatter
Red-Portal Mar 14, 2025
081d6ff
remove plotting
Red-Portal Mar 14, 2025
a32a673
Merge branch 'update_advancedvi' of github.com:TuringLang/Turing.jl i…
Red-Portal Mar 14, 2025
1bcec3e
fix formatting
Red-Portal Mar 14, 2025
b142832
fix formatting
Red-Portal Mar 14, 2025
061ec35
fix formatting
Red-Portal Mar 14, 2025
736bd3e
remove unused dependency
Red-Portal Mar 14, 2025
fd434d8
Merge branch 'update_advancedvi' of github.com:TuringLang/Turing.jl i…
Red-Portal Mar 14, 2025
57108ee
Merge branch 'main' into update_advancedvi
yebai Mar 18, 2025
8dc8067
Merge branch 'main' into update_advancedvi
yebai Mar 20, 2025
297c32a
Update Project.toml
yebai Mar 20, 2025
3010b5e
Merge branch 'main' of github.com:TuringLang/Turing.jl into update_ad…
Red-Portal Mar 25, 2025
0c04434
fix make some arugments of vi initializer to be optional kwargs
Red-Portal Mar 25, 2025
17a8290
Merge branch 'update_advancedvi' of github.com:TuringLang/Turing.jl i…
Red-Portal Mar 25, 2025
0e496c4
Merge branch 'main' into update_advancedvi
yebai Apr 18, 2025
c1533a8
Update src/variational/bijectors.jl
yebai Apr 18, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ Accessors = "0.1"
AdvancedHMC = "0.3.0, 0.4.0, 0.5.2, 0.6, 0.7"
AdvancedMH = "0.8"
AdvancedPS = "0.6.0"
AdvancedVI = "0.2"
AdvancedVI = "0.3.1"
BangBang = "0.4.2"
Bijectors = "0.14, 0.15"
Compat = "4.15.0"
Expand Down
180 changes: 150 additions & 30 deletions src/variational/VariationalInference.jl
Original file line number Diff line number Diff line change
@@ -1,50 +1,170 @@

module Variational

using DistributionsAD: DistributionsAD
using DynamicPPL: DynamicPPL
using StatsBase: StatsBase
using StatsFuns: StatsFuns
using LogDensityProblems: LogDensityProblems
using DynamicPPL
using ADTypes
using Distributions
using LinearAlgebra
using LogDensityProblems
using Random

using Random: Random
import ..Turing: DEFAULT_ADTYPE, PROGRESS

import AdvancedVI
import Bijectors

# Reexports
using AdvancedVI: vi, ADVI, ELBO, elbo, TruncatedADAGrad, DecayedADAGrad
export vi, ADVI, ELBO, elbo, TruncatedADAGrad, DecayedADAGrad

"""
make_logjoint(model::Model; weight = 1.0)
Constructs the logjoint as a function of latent variables, i.e. the map z → p(x ∣ z) p(z).
The weight used to scale the likelihood, e.g. when doing stochastic gradient descent one needs to
use `DynamicPPL.MiniBatch` context to run the `Model` with a weight `num_total_obs / batch_size`.
## Notes
- For sake of efficiency, the returned function is closes over an instance of `VarInfo`. This means that you *might* run into some weird behaviour if you call this method sequentially using different types; if that's the case, just generate a new one for each type using `make_logjoint`.
"""
function make_logjoint(model::DynamicPPL.Model; weight=1.0)
# setup
using AdvancedVI: RepGradELBO, ScoreGradELBO, DoG, DoWG
export vi, RepGradELBO, ScoreGradELBO, DoG, DoWG

export meanfield_gaussian, fullrank_gaussian

include("bijectors.jl")

function make_logdensity(model::DynamicPPL.Model)
weight = 1.0
ctx = DynamicPPL.MiniBatchContext(DynamicPPL.DefaultContext(), weight)
f = DynamicPPL.LogDensityFunction(model, DynamicPPL.VarInfo(model), ctx)
return Base.Fix1(LogDensityProblems.logdensity, f)
return DynamicPPL.LogDensityFunction(model, DynamicPPL.VarInfo(model), ctx)
end

# objectives
function (elbo::ELBO)(
function initialize_gaussian_scale(
rng::Random.AbstractRNG,
alg::AdvancedVI.VariationalInference,
q,
model::DynamicPPL.Model,
num_samples;
weight=1.0,
location::AbstractVector,
scale::AbstractMatrix;
num_samples::Int=10,
num_max_trials::Int=10,
reduce_factor=one(eltype(scale)) / 2,
)
prob = make_logdensity(model)
ℓπ = Base.Fix1(LogDensityProblems.logdensity, prob)
varinfo = DynamicPPL.VarInfo(model)

n_trial = 0
while true
q = AdvancedVI.MvLocationScale(location, scale, Normal())
b = Bijectors.bijector(model; varinfo=varinfo)
q_trans = Bijectors.transformed(q, Bijectors.inverse(b))
energy = mean(ℓπ, eachcol(rand(rng, q_trans, num_samples)))

if isfinite(energy)
return scale
elseif n_trial == num_max_trials
error("Could not find an initial")
end

scale = reduce_factor * scale
n_trial += 1
end
end

function meanfield_gaussian(
rng::Random.AbstractRNG,
model::DynamicPPL.Model;
location::Union{Nothing,<:AbstractVector}=nothing,
scale::Union{Nothing,<:Diagonal}=nothing,
kwargs...,
)
varinfo = DynamicPPL.VarInfo(model)
# Use linked `varinfo` to determine the correct number of parameters.
# TODO: Replace with `length` once this is implemented for `VarInfo`.
varinfo_linked = DynamicPPL.link(varinfo, model)
num_params = length(varinfo_linked[:])

μ = if isnothing(location)
zeros(num_params)
else
@assert length(location) == num_params "Length of the provided location vector, $(length(location)), does not match dimension of the target distribution, $(num_params)."
location
end

L = if isnothing(scale)
initialize_gaussian_scale(rng, model, μ, Diagonal(ones(num_params)); kwargs...)
else
@assert size(scale) == (num_params, num_params) "Dimensions of the provided scale matrix, $(size(scale)), does not match the dimension of the target distribution, $(num_params)."
L = scale
end

q = AdvancedVI.MeanFieldGaussian(μ, L)
b = Bijectors.bijector(model; varinfo=varinfo)
return Bijectors.transformed(q, Bijectors.inverse(b))
end

function meanfield_gaussian(
model::DynamicPPL.Model;
location::Union{Nothing,<:AbstractVector}=nothing,
scale::Union{Nothing,<:Diagonal}=nothing,
kwargs...,
)
return elbo(rng, alg, q, make_logjoint(model; weight=weight), num_samples; kwargs...)
return meanfield_gaussian(Random.default_rng(), model; location, scale, kwargs...)
end

function fullrank_gaussian(
rng::Random.AbstractRNG,
model::DynamicPPL.Model;
location::Union{Nothing,<:AbstractVector}=nothing,
scale::Union{Nothing,<:LowerTriangular}=nothing,
kwargs...,
)
varinfo = DynamicPPL.VarInfo(model)
# Use linked `varinfo` to determine the correct number of parameters.
# TODO: Replace with `length` once this is implemented for `VarInfo`.
varinfo_linked = DynamicPPL.link(varinfo, model)
num_params = length(varinfo_linked[:])

μ = if isnothing(location)
zeros(num_params)
else
@assert length(location) == num_params "Length of the provided location vector, $(length(location)), does not match dimension of the target distribution, $(num_params)."
location
end

L = if isnothing(scale)
L0 = LowerTriangular(Matrix{Float64}(I, num_params, num_params))
initialize_gaussian_scale(rng, model, μ, L0; kwargs...)
else
@assert size(scale) == (num_params, num_params) "Dimensions of the provided scale matrix, $(size(scale)), does not match the dimension of the target distribution, $(num_params)."
scale
end

q = AdvancedVI.FullRankGaussian(μ, L)
b = Bijectors.bijector(model; varinfo=varinfo)
return Bijectors.transformed(q, Bijectors.inverse(b))
end

# VI algorithms
include("advi.jl")
function fullrank_gaussian(
model::DynamicPPL.Model;
location::Union{Nothing,<:AbstractVector}=nothing,
scale::Union{Nothing,<:LowerTriangular}=nothing,
kwargs...,
)
return fullrank_gaussian(Random.default_rng(), model; location, scale, kwargs...)
end

function vi(
model::DynamicPPL.Model,
q::Bijectors.TransformedDistribution,
n_iterations::Int;
objective=RepGradELBO(10; entropy=AdvancedVI.ClosedFormEntropyZeroGradient()),
show_progress::Bool=PROGRESS[],
optimizer=AdvancedVI.DoWG(),
averager=AdvancedVI.PolynomialAveraging(),
operator=AdvancedVI.ProximalLocationScaleEntropy(),
adtype::ADTypes.AbstractADType=DEFAULT_ADTYPE,
kwargs...,
)
return AdvancedVI.optimize(
make_logdensity(model),
objective,
q,
n_iterations;
show_progress=show_progress,
adtype,
optimizer,
averager,
operator,
kwargs...,
)
end

end
140 changes: 0 additions & 140 deletions src/variational/advi.jl

This file was deleted.

Loading
Loading