Skip to content

UMDataScienceLab/Personalized_PCA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Personalized PCA

This is the implementation of the paper Personalized PCA: decoupling shared and unique features.

If you run into any problems, please submit an issue, or contact the authors of that paper.

How to test a simple example

  • run python3 ppca.py --dataset=borrowpowertest --logoutput=True

Results will be generated to the "outputs/" folder

How to run the video segmentation experiment

  • Create a folder called "images/"
  • Put all the image frames of the video in the "images/" folder
  • Rewrite the first line of the function load_car_data in the file imgpro.py accordingly
  • Run python3 ppca.py --dataset='img_test' --logoutput=True
  • If needed, fine-tune 'ngc' and 'nlc' to get the best results

How to run the presidential debate topics modeling experiment

  • Download the dataset from this link
  • Put all files in the "debate/" folder
  • Run python3 ppca.py --dataset='debate_test' --logoutput=True

File organization

  • ppca.py contains all the hyperparameters
  • algs.py contains the implementation of personalized PCA learning algorithm
  • imgpro.py, vectorize.py, mnist.py are used to handle video data, debate corpus, and FEMNIST dataset respectively.

About

An implementation for personalized PCA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%