Skip to content

VidhuSarwal/resume-parse-engine

 
 

Repository files navigation

Resume Parser API


THIS IS NOT THE MATCHING ENGINE


Steps to Run

  1. Install all dependencies from requirements.txt.
  2. Activate the virtual environment (venv).
  3. Start the API.

Current API Routes

  1. (POST) /resume/pdf

    • Description: Upload your resume as form-data.
      • Key: file
      • MIME Type: application/pdf
    • Output:
      {
          "filename": "da.pdf",
          "status": "Received file and saved successfully"
      }
  2. (GET) /predict/<filename.pdf>

    • Description: Fetch the predicted output for the uploaded file.
    • Output:
      {
          "entities": [
              {
                  "label": "Entity 1",
                  "text": "Entity Value"
              },
              {
                  "label": "Entity 2",
                  "text": "Entity Value"
              }
          ]
      }
  3. (NEW!!!) (POST) /resume/beta

    • Description: Newer, Optimised and Faster Method to get predictions.
      • Key: file
      • MIME Type: application/pdf
    • Output:
      {
          "name": " ",
          "email": "",
          "mobile_number": "",
          "skills": [],
          "college_name": null,
          "degree": [""],
          "designation": [""],
          "experience": [""],
          "company_name": null,
          "no_of_pages": 2,
          "total_exp": null,
          "total_experience": 0.0,
          "linkedin": null
      }
  4. (POST) /matching/short

    • Description: Processes the provided JSON data and returns profile and relevancy scores.
    • Output:
      {
          "profile_score": 85.0,
          "relevancy_score": 90.0
      }
  5. (POST) /matching/longVerbose

    • Description: Processes the provided JSON data and returns detailed profile comparison information.
    • Output:
      {
          "profile_score": 85.0,
          "relevancy_score": 90.0,
          "candidates": [
              {
                  "name": "John Doe",
                  "intersection_score": 75.0,
                  "cosine_similarity": 85.0,
                  "jaccard_similarity": 60.0,
                  "overall_similarity": 70.0
              },
              {
                  "name": "Jane Doe",
                  "intersection_score": 65.0,
                  "cosine_similarity": 75.0,
                  "jaccard_similarity": 55.0,
                  "overall_similarity": 60.0
              }
          ]
      }

Notes

  • The current implementation uses V1 of the model.
  • A new model is under development, but the output structure will remain the same.
  • Enjoy using the current version in the meantime!

To-Do List

  • Add OCR support using Tesseract.
  • Add Matching Engine.
  • Add JD Parser.
  • Your Mom .
    \

About

Developed this for SIH 2024

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%