Skip to content

Commit 87bc8b9

Browse files
F25 micro (#37)
* update teh s25 micro quest book * updated f25 quest * update --------- Co-authored-by: muhtasim001 <[email protected]>
1 parent 039108a commit 87bc8b9

File tree

1 file changed

+168
-107
lines changed

1 file changed

+168
-107
lines changed
Lines changed: 168 additions & 107 deletions
Original file line numberDiff line numberDiff line change
@@ -1,107 +1,168 @@
1-
# Micro Autonomy Quest Book - Spring 2025
2-
3-
## The Great Objective: Fully Autonomous F1tenth Racing Car with LiDAR and Camera
4-
5-
Micro Autonomy aims to win the F1teneth Autonomous Racing Competition in the future
6-
7-
## Term Objectives Summary
8-
9-
The objectives for this term focuses on integrating the hardware and software stacks. This includes:
10-
11-
1. **Hardware Setup**
12-
- Assemble & test everything including Jetson, LiDAR and VESC to work properly and publish ros messages needed for autonomous navigation
13-
2. **State Estimation**
14-
- Estimates current position of vehicle against known world map
15-
2. **Mapping: SLAM**
16-
- Generate a map in image format and a yaml file for the map specifications based on IMU, encoder and LiDAR specifications on a real world setup
17-
3. **Planning: Lattice Planner**
18-
- Static obstacle avoidance support
19-
4. **Controls: Pure Pursuit**
20-
- Static obstacle avoidance support
21-
22-
1. **Hardware Setup**
23-
24-
| Score | Criteria |
25-
|-------|-------------------------------------------------------------------------|
26-
| 10/10 | Setup interfaces for sensors to publish readings and actuators to take ROS topic commands to support autonomous control|
27-
| 7/10 | Test electronic & tune motor controllers |
28-
| 5/10 | Assemble all components for F1Tenth Car to start manually controlled movement|
29-
| 0/10 | No Progress |
30-
31-
**Minimum Requirements:** Autonomous control ready (10/10)
32-
33-
2. **State Estimation**
34-
35-
| Score | Criteria |
36-
|-------|-------------------------------------------------------------------------|
37-
| 5/5 | Tuned state estimation position based on IMU, encoder and LiDAR in actual vehicle |
38-
| 3/5 | Un-tuned state estimation position based on IMU, encoder and LiDAR in actual vehicle |
39-
| 0/5 | No Progress |
40-
41-
**Minimum Requirements:** Untuned vehicle estimation (3/5)
42-
43-
3. **Mapping: SLAM**
44-
45-
| Score | Criteria |
46-
|-------|-------------------------------------------------------------------------|
47-
| 10/10 | High quality map and yaml file generated through state estimation and LiDAR scans on actual vehicle for complex routes|
48-
| 7/10 | Map and yaml file generated through state estimation and LiDAR scans on actual vehicle for simple routes|
49-
| 5/10 | Map and yaml file generated through state estimation and LiDAR scanes in simulation |
50-
| 0/10 | No Progress |
51-
52-
**Minimum Requirements:** Map and yaml file generated through state estimation and LiDAR scans on actual vehicle for simple routes (7/10)
53-
54-
55-
4. **Raceline Generation/Optimization**
56-
57-
| Score | Criteria |
58-
|-------|-------------------------------------------------------------------------|
59-
| 10/10 | Optimizes centerline to generate a raceline that minimizes actual lap time based on complex vehicle dynamics |
60-
| 0/10 | No Progress |
61-
62-
**Minimum Requirements:** (TBD) No minimum requirements
63-
64-
5. **Planning: Lattice Planner**
65-
66-
| Score | Criteria |
67-
|-------|-------------------------------------------------------------------------|
68-
| 10/10 | Dynamic obstacle avoidance |
69-
| 8/10 | Genenerates/optimizes local trajectory based on cost map and vehicle dynamics to achieve static obstalce avoidance on actual vehicle|
70-
| 5/10 | Generates & optimize a local trajectory for obstacle avoidance static obstacles are on the ideal path |
71-
| 3/10 | Generates local trajectory by using a cost map to achieve obstacle avoidance when static obstacles are on the ideal path |
72-
| 0/10 | No Progress |
73-
74-
**Minimum Requirements:** Real vehicle static obstacle avoidance (8/10)
75-
76-
6. **Controls: Pure Pursuit**
77-
78-
| Score | Criteria |
79-
|-------|-------------------------------------------------------------------------|
80-
| 10/10 | Tune pure pursuit controller for dynamic obstacle avoidance on actual vehicle |
81-
| 8/10 | Tune pure pursuit controller for static obstacle avoidance on actual vehicle |
82-
| 5/10 | Follows local trajectories and ideal velocities smoothly on actual vehicle |
83-
| 0/10 | No Progress |
84-
85-
**Minimum Requirements:** Real vehicle static obstacle avoidance (8/10)
86-
87-
7. **Integration**
88-
89-
| Score | Criteria |
90-
|-------|-------------------------------------------------------------------------|
91-
| 10/10 | Full software integration & hardware interfaces for real life autonomous racing |
92-
| 8/10 | Full software integration in simulation for autonomous driving, limited hardware interfaces |
93-
| 0/10 | No progress|
94-
95-
**Minimum Requirements:** Full integration (10/10)
96-
97-
## Scoring Template
98-
99-
| Quest Name | Description | Due Date | Score |
100-
|------------|-------------|----------|-------|
101-
| Hardware Setup | | 2025-08-31 | |
102-
| State Estimation | | 2025-08-31 | |
103-
| Mapping: SLAM | | 2025-08-31 | |
104-
| Raceline Generation/Optimization | | 2025-08-31 | |
105-
| Planning: Lattice Planner | | 2025-04-31 | |
106-
| Controls: Pure Pursuit | | 2025-08-31 | |
107-
| Integration | Full Integration | 2025-08-31 | |
1+
# Micro Autonomy Quest Book - Spring 2025
2+
3+
## The Great Objective: Fully Autonomous F1tenth Racing Car with LiDAR and Camera
4+
5+
Micro Autonomy aims to win the F1teneth Autonomous Racing Competition in the future
6+
7+
## Term Objectives and Tasks
8+
9+
- **2.3. Camera Integration with Localization**: Integrate Camera Object Detection with Localization to use real-time slam mapping
10+
- **5. Planning: Local Planning**: Enable Obstacle Avoidance in lattice planner on actual vehicle
11+
- **6. Control: Pure Pursuit**: Integrate and tune algorithm with local planner to work on actual vehicle
12+
13+
## **Hardware Setup**
14+
15+
1.1 Traxis Car Assembly
16+
17+
| Score | Criteria |
18+
|-------|-------------------------------------------------------------------------|
19+
| 10/10 | Fully built with all sensors and hardware mounted and power system working|
20+
| 8/10 | Have all the sensors and Jetson mounted to the Platfrom Plate |
21+
| 6/10 | Fabriate the Platfrom mounting plate and all other mounting hardware |
22+
| 4/10 | Gut and stip all the components from the original chassis |
23+
| **2/10** | Purchase & manufacture all (within current budget) components |
24+
| 0/10 | No Progress |
25+
26+
Progress: 10/10
27+
28+
1.2 LiDAR
29+
30+
| Score | Criteria |
31+
|-------|-------------------------------------------------------------------------|
32+
| 10/10 | Setup interfaces for LiDAR to ouput a ROS /scan topic |
33+
| 7/10 | setup the docker compose file to correctly interface with the LiDAR |
34+
| 5/10 | configure the ip and network settings for the LiDAR |
35+
| 0/10 | No Progress |
36+
37+
Progress: 10/10
38+
39+
1.3 Vec
40+
41+
| Score | Criteria |
42+
|-------|-------------------------------------------------------------------------|
43+
| 10/10 | tune the IMU to correctly how roll, pitch and yaw data and accleration values |
44+
| 7/10 | tune the motor PID controller to produce a step response |
45+
| 5/10 | configure all the hardware limits and current settings |
46+
| 2/10 | Have the vesc power on and showup in the Vesc tool software |
47+
| 0/10 | No Progress |
48+
49+
Progress: 10/10
50+
51+
1.4 Overall Hardware integration
52+
53+
| Score | Criteria |
54+
|-------|-------------------------------------------------------------------------|
55+
| 10/10 | Setup interface with the correct ROS Drivers and have a tuned and accurate odometry output |
56+
| 7/10 | configure the yaml files to fine tune odometry |
57+
| 5/10 | Install the correct ROS Transport drivers along with F1teneth Driver Stack |
58+
| 0/10 | No Progress |
59+
60+
Progress: 10/10
61+
62+
## **State Estimation and Localization**
63+
64+
2.1 Extended Kalman Filter
65+
66+
| Score | Criteria |
67+
|-------|-------------------------------------------------------------------------|
68+
| 10/10 | Have a fully functional Extended Kalman Filter working on the physical vehicle |
69+
| 8/10 | Have a fully functional Extended Kalman Filter working in the simulation |
70+
| 6/10 | Have fully Defined sensor models for the EKF |
71+
| 4/10 | Have Fully Defined motion model for the EKF along with the corresponding Jacobian |
72+
| 2/10 | have fully Defined state to propigate for the EKF |
73+
| 0/10 | No Progress |
74+
75+
Progress: 10/10
76+
77+
2.2 Particle Filter
78+
79+
| Score | Criteria |
80+
|-------|-------------------------------------------------------------------------|
81+
| 5/5 | Have Particle Filter working on physical vehicle |
82+
| 3/5 | Have Particle Filter working in the simulation |
83+
| 0/5 | No Progress |
84+
85+
Progress: 10/10
86+
87+
2.3 Integrate Camera Object Detection with Localization
88+
89+
| Score | Criteria |
90+
|-------|-------------------------------------------------------------------------|
91+
| 10/10 | Localization works for changing environments in actual vehicle |
92+
| 5/10 | Ignores LiDAR scans that interfering with real-time mapping |
93+
| 0/10 | No Progress |
94+
95+
Progress: 0/10
96+
97+
98+
## **Mapping: SLAM**
99+
100+
| Score | Criteria |
101+
|-------|-------------------------------------------------------------------------|
102+
| 10/10 | Map and yaml file generated through state estimation and LiDAR scans on actual vehicle |
103+
| 8/10 | Map and yaml file generated through state estimation and LiDAR scanes in simulation |
104+
| **5/10** | Map and yaml file generated through true position (odometry) and LiDAR scans in simulation |
105+
| 0/10 | No Progress |
106+
107+
Progress: 10/10
108+
109+
## **Raceline Generation/Optimization**
110+
111+
| Score | Criteria |
112+
|-------|-------------------------------------------------------------------------|
113+
| 10/10 | Optimizes centerline to generate a raceline and velocity profile that minimizes steering for all maps |
114+
| 7/10 | Optimizes centerline to generate a raceline that minimizes steering for all maps |
115+
| 5/10 | Generates a centerline for the vehicle to follow |
116+
| 0/10 | No Progress |
117+
118+
Progress: 10/10
119+
## **Planning: Lattice Planner**
120+
121+
| Score | Criteria |
122+
|-------|-------------------------------------------------------------------------|
123+
| 10/10 | Genenerates/optimizes local trajectory based on cost map and vehicle dynamics to achieve obstalce avoidance on actual vehicle|
124+
| 9/10 | Genenerates/optimizes local trajectory based on cost map and vehicle dynamics to achieve obstalce avoidance |
125+
| 8/10 | Generates local trajectory by using a cost map to achieve obstacle avoidance when obstalces are on the ideal path |
126+
| 5/10 | Generates local trajectory to make vehicle follow the raceline (ideal path)|
127+
| 0/10 | No Progress |
128+
129+
Progress: 5/10
130+
131+
## **Controls: Pure Pursuit**
132+
133+
| Score | Criteria |
134+
|-------|-------------------------------------------------------------------------|
135+
| 10/10 | Follows local trajectories and ideal velocities smoothly on actual vehicle |
136+
| 7/10 | Follows local trajectories and ideal velocities smoothly in simulation |
137+
| 4/10 | Follows a global trajectory by controlling steerring angle with a constant velocity |
138+
| 0/10 | No Progress |
139+
140+
Progress: 7/10
141+
142+
## **Camera Object Detection and Tracking**
143+
144+
| Score | Criteria |
145+
|-------|-------------------------------------------------------------------------|
146+
| 10/10 | Camera detects opponent cars and returns bounding boxes reliabilty in real-time with low latency |
147+
| 6/10 | Camera detects opponent cars and returns bounding boxes |
148+
| 0/10 | No Progress |
149+
150+
Progress: 0/10
151+
152+
153+
## Scoring Template Summary
154+
155+
| Quest Name | Description | Due Date | Score |
156+
|------------|-------------|----------|-------|
157+
| Hardware Setup 1.1 | Fully built with all sensors and hardware mounted and power system working | 2025-08-31 | 10/10 |
158+
| Hardware Setup 1.2 | Setup interfaces for LiDAR to ouput a ROS /scan topic | 2025-08-31 | 10/10 |
159+
| Hardware Setup 1.3 | Tune the IMU to correctly how roll, pitch and yaw data and accleration values | 2025-08-31 | 10/10 |
160+
| Hardware Setup 1.4 | Setup interface with the correct ROS Drivers and have a tuned and accurate odometry output | 2025-08-31 | 10/10 |
161+
| State Estimation 2.1 | Have a fully functional Extended Kalman Filter working on the physical vehicle | 2025-08-31 | 10/10 |
162+
| State Estimation 2.2 | Have Particle Filter working on physical vehicle | 2025-08-31 | 5/5 |
163+
| State Estimation 2.3 | Integrate Camera Object Detection with Localization to use real-time slam mapping | | 0/10 |
164+
| Mapping: SLAM | Generate a map in image format and a yaml file for the map specifications based on IMU, encoder and LiDAR specifications. | 2025-08-31 | 10/10 |
165+
| Raceline Generation/Optimization | Generate a optimized raceline as global trajectory (ideal path) for the race car to follow to minimize lap time. | 2025-08-31 | 10/10 |
166+
| Planning: Lattice Planner | Generate local trajectories for obstacle avoidance and following global trajectory during Racing. | 2025-08-31 | 5/10 |
167+
| Controls: Pure Pursuit | Controls the vehicle's steering and trottle to following the trajectories generated by the planning module. | 2025-08-31 | 7/10 |
168+
| Camera Object Detection and Edge Tracking | Camera detects opponent cars and returns bounding boxes reliabilty in real-time with low latency | | 0/10 |

0 commit comments

Comments
 (0)