|
1 | | -# Micro Autonomy Quest Book - Spring 2025 |
2 | | - |
3 | | -## The Great Objective: Fully Autonomous F1tenth Racing Car with LiDAR and Camera |
4 | | - |
5 | | -Micro Autonomy aims to win the F1teneth Autonomous Racing Competition in the future |
6 | | - |
7 | | -## Term Objectives Summary |
8 | | - |
9 | | -The objectives for this term focuses on integrating the hardware and software stacks. This includes: |
10 | | - |
11 | | -1. **Hardware Setup** |
12 | | - - Assemble & test everything including Jetson, LiDAR and VESC to work properly and publish ros messages needed for autonomous navigation |
13 | | -2. **State Estimation** |
14 | | - - Estimates current position of vehicle against known world map |
15 | | -2. **Mapping: SLAM** |
16 | | - - Generate a map in image format and a yaml file for the map specifications based on IMU, encoder and LiDAR specifications on a real world setup |
17 | | -3. **Planning: Lattice Planner** |
18 | | - - Static obstacle avoidance support |
19 | | -4. **Controls: Pure Pursuit** |
20 | | - - Static obstacle avoidance support |
21 | | - |
22 | | -1. **Hardware Setup** |
23 | | - |
24 | | -| Score | Criteria | |
25 | | -|-------|-------------------------------------------------------------------------| |
26 | | -| 10/10 | Setup interfaces for sensors to publish readings and actuators to take ROS topic commands to support autonomous control| |
27 | | -| 7/10 | Test electronic & tune motor controllers | |
28 | | -| 5/10 | Assemble all components for F1Tenth Car to start manually controlled movement| |
29 | | -| 0/10 | No Progress | |
30 | | - |
31 | | -**Minimum Requirements:** Autonomous control ready (10/10) |
32 | | - |
33 | | -2. **State Estimation** |
34 | | - |
35 | | -| Score | Criteria | |
36 | | -|-------|-------------------------------------------------------------------------| |
37 | | -| 5/5 | Tuned state estimation position based on IMU, encoder and LiDAR in actual vehicle | |
38 | | -| 3/5 | Un-tuned state estimation position based on IMU, encoder and LiDAR in actual vehicle | |
39 | | -| 0/5 | No Progress | |
40 | | - |
41 | | -**Minimum Requirements:** Untuned vehicle estimation (3/5) |
42 | | - |
43 | | -3. **Mapping: SLAM** |
44 | | - |
45 | | -| Score | Criteria | |
46 | | -|-------|-------------------------------------------------------------------------| |
47 | | -| 10/10 | High quality map and yaml file generated through state estimation and LiDAR scans on actual vehicle for complex routes| |
48 | | -| 7/10 | Map and yaml file generated through state estimation and LiDAR scans on actual vehicle for simple routes| |
49 | | -| 5/10 | Map and yaml file generated through state estimation and LiDAR scanes in simulation | |
50 | | -| 0/10 | No Progress | |
51 | | - |
52 | | -**Minimum Requirements:** Map and yaml file generated through state estimation and LiDAR scans on actual vehicle for simple routes (7/10) |
53 | | - |
54 | | - |
55 | | -4. **Raceline Generation/Optimization** |
56 | | - |
57 | | -| Score | Criteria | |
58 | | -|-------|-------------------------------------------------------------------------| |
59 | | -| 10/10 | Optimizes centerline to generate a raceline that minimizes actual lap time based on complex vehicle dynamics | |
60 | | -| 0/10 | No Progress | |
61 | | - |
62 | | -**Minimum Requirements:** (TBD) No minimum requirements |
63 | | - |
64 | | -5. **Planning: Lattice Planner** |
65 | | - |
66 | | -| Score | Criteria | |
67 | | -|-------|-------------------------------------------------------------------------| |
68 | | -| 10/10 | Dynamic obstacle avoidance | |
69 | | -| 8/10 | Genenerates/optimizes local trajectory based on cost map and vehicle dynamics to achieve static obstalce avoidance on actual vehicle| |
70 | | -| 5/10 | Generates & optimize a local trajectory for obstacle avoidance static obstacles are on the ideal path | |
71 | | -| 3/10 | Generates local trajectory by using a cost map to achieve obstacle avoidance when static obstacles are on the ideal path | |
72 | | -| 0/10 | No Progress | |
73 | | - |
74 | | -**Minimum Requirements:** Real vehicle static obstacle avoidance (8/10) |
75 | | - |
76 | | -6. **Controls: Pure Pursuit** |
77 | | - |
78 | | -| Score | Criteria | |
79 | | -|-------|-------------------------------------------------------------------------| |
80 | | -| 10/10 | Tune pure pursuit controller for dynamic obstacle avoidance on actual vehicle | |
81 | | -| 8/10 | Tune pure pursuit controller for static obstacle avoidance on actual vehicle | |
82 | | -| 5/10 | Follows local trajectories and ideal velocities smoothly on actual vehicle | |
83 | | -| 0/10 | No Progress | |
84 | | - |
85 | | -**Minimum Requirements:** Real vehicle static obstacle avoidance (8/10) |
86 | | - |
87 | | -7. **Integration** |
88 | | - |
89 | | -| Score | Criteria | |
90 | | -|-------|-------------------------------------------------------------------------| |
91 | | -| 10/10 | Full software integration & hardware interfaces for real life autonomous racing | |
92 | | -| 8/10 | Full software integration in simulation for autonomous driving, limited hardware interfaces | |
93 | | -| 0/10 | No progress| |
94 | | - |
95 | | -**Minimum Requirements:** Full integration (10/10) |
96 | | - |
97 | | -## Scoring Template |
98 | | - |
99 | | -| Quest Name | Description | Due Date | Score | |
100 | | -|------------|-------------|----------|-------| |
101 | | -| Hardware Setup | | 2025-08-31 | | |
102 | | -| State Estimation | | 2025-08-31 | | |
103 | | -| Mapping: SLAM | | 2025-08-31 | | |
104 | | -| Raceline Generation/Optimization | | 2025-08-31 | | |
105 | | -| Planning: Lattice Planner | | 2025-04-31 | | |
106 | | -| Controls: Pure Pursuit | | 2025-08-31 | | |
107 | | -| Integration | Full Integration | 2025-08-31 | | |
| 1 | +# Micro Autonomy Quest Book - Spring 2025 |
| 2 | + |
| 3 | +## The Great Objective: Fully Autonomous F1tenth Racing Car with LiDAR and Camera |
| 4 | + |
| 5 | +Micro Autonomy aims to win the F1teneth Autonomous Racing Competition in the future |
| 6 | + |
| 7 | +## Term Objectives and Tasks |
| 8 | + |
| 9 | +- **2.3. Camera Integration with Localization**: Integrate Camera Object Detection with Localization to use real-time slam mapping |
| 10 | +- **5. Planning: Local Planning**: Enable Obstacle Avoidance in lattice planner on actual vehicle |
| 11 | +- **6. Control: Pure Pursuit**: Integrate and tune algorithm with local planner to work on actual vehicle |
| 12 | + |
| 13 | +## **Hardware Setup** |
| 14 | + |
| 15 | +1.1 Traxis Car Assembly |
| 16 | + |
| 17 | +| Score | Criteria | |
| 18 | +|-------|-------------------------------------------------------------------------| |
| 19 | +| 10/10 | Fully built with all sensors and hardware mounted and power system working| |
| 20 | +| 8/10 | Have all the sensors and Jetson mounted to the Platfrom Plate | |
| 21 | +| 6/10 | Fabriate the Platfrom mounting plate and all other mounting hardware | |
| 22 | +| 4/10 | Gut and stip all the components from the original chassis | |
| 23 | +| **2/10** | Purchase & manufacture all (within current budget) components | |
| 24 | +| 0/10 | No Progress | |
| 25 | + |
| 26 | +Progress: 10/10 |
| 27 | + |
| 28 | +1.2 LiDAR |
| 29 | + |
| 30 | +| Score | Criteria | |
| 31 | +|-------|-------------------------------------------------------------------------| |
| 32 | +| 10/10 | Setup interfaces for LiDAR to ouput a ROS /scan topic | |
| 33 | +| 7/10 | setup the docker compose file to correctly interface with the LiDAR | |
| 34 | +| 5/10 | configure the ip and network settings for the LiDAR | |
| 35 | +| 0/10 | No Progress | |
| 36 | + |
| 37 | +Progress: 10/10 |
| 38 | + |
| 39 | +1.3 Vec |
| 40 | + |
| 41 | +| Score | Criteria | |
| 42 | +|-------|-------------------------------------------------------------------------| |
| 43 | +| 10/10 | tune the IMU to correctly how roll, pitch and yaw data and accleration values | |
| 44 | +| 7/10 | tune the motor PID controller to produce a step response | |
| 45 | +| 5/10 | configure all the hardware limits and current settings | |
| 46 | +| 2/10 | Have the vesc power on and showup in the Vesc tool software | |
| 47 | +| 0/10 | No Progress | |
| 48 | + |
| 49 | +Progress: 10/10 |
| 50 | + |
| 51 | +1.4 Overall Hardware integration |
| 52 | + |
| 53 | +| Score | Criteria | |
| 54 | +|-------|-------------------------------------------------------------------------| |
| 55 | +| 10/10 | Setup interface with the correct ROS Drivers and have a tuned and accurate odometry output | |
| 56 | +| 7/10 | configure the yaml files to fine tune odometry | |
| 57 | +| 5/10 | Install the correct ROS Transport drivers along with F1teneth Driver Stack | |
| 58 | +| 0/10 | No Progress | |
| 59 | + |
| 60 | +Progress: 10/10 |
| 61 | + |
| 62 | +## **State Estimation and Localization** |
| 63 | + |
| 64 | +2.1 Extended Kalman Filter |
| 65 | + |
| 66 | +| Score | Criteria | |
| 67 | +|-------|-------------------------------------------------------------------------| |
| 68 | +| 10/10 | Have a fully functional Extended Kalman Filter working on the physical vehicle | |
| 69 | +| 8/10 | Have a fully functional Extended Kalman Filter working in the simulation | |
| 70 | +| 6/10 | Have fully Defined sensor models for the EKF | |
| 71 | +| 4/10 | Have Fully Defined motion model for the EKF along with the corresponding Jacobian | |
| 72 | +| 2/10 | have fully Defined state to propigate for the EKF | |
| 73 | +| 0/10 | No Progress | |
| 74 | + |
| 75 | +Progress: 10/10 |
| 76 | + |
| 77 | +2.2 Particle Filter |
| 78 | + |
| 79 | +| Score | Criteria | |
| 80 | +|-------|-------------------------------------------------------------------------| |
| 81 | +| 5/5 | Have Particle Filter working on physical vehicle | |
| 82 | +| 3/5 | Have Particle Filter working in the simulation | |
| 83 | +| 0/5 | No Progress | |
| 84 | + |
| 85 | +Progress: 10/10 |
| 86 | + |
| 87 | +2.3 Integrate Camera Object Detection with Localization |
| 88 | + |
| 89 | +| Score | Criteria | |
| 90 | +|-------|-------------------------------------------------------------------------| |
| 91 | +| 10/10 | Localization works for changing environments in actual vehicle | |
| 92 | +| 5/10 | Ignores LiDAR scans that interfering with real-time mapping | |
| 93 | +| 0/10 | No Progress | |
| 94 | + |
| 95 | +Progress: 0/10 |
| 96 | + |
| 97 | + |
| 98 | +## **Mapping: SLAM** |
| 99 | + |
| 100 | +| Score | Criteria | |
| 101 | +|-------|-------------------------------------------------------------------------| |
| 102 | +| 10/10 | Map and yaml file generated through state estimation and LiDAR scans on actual vehicle | |
| 103 | +| 8/10 | Map and yaml file generated through state estimation and LiDAR scanes in simulation | |
| 104 | +| **5/10** | Map and yaml file generated through true position (odometry) and LiDAR scans in simulation | |
| 105 | +| 0/10 | No Progress | |
| 106 | + |
| 107 | +Progress: 10/10 |
| 108 | + |
| 109 | +## **Raceline Generation/Optimization** |
| 110 | + |
| 111 | +| Score | Criteria | |
| 112 | +|-------|-------------------------------------------------------------------------| |
| 113 | +| 10/10 | Optimizes centerline to generate a raceline and velocity profile that minimizes steering for all maps | |
| 114 | +| 7/10 | Optimizes centerline to generate a raceline that minimizes steering for all maps | |
| 115 | +| 5/10 | Generates a centerline for the vehicle to follow | |
| 116 | +| 0/10 | No Progress | |
| 117 | + |
| 118 | +Progress: 10/10 |
| 119 | +## **Planning: Lattice Planner** |
| 120 | + |
| 121 | +| Score | Criteria | |
| 122 | +|-------|-------------------------------------------------------------------------| |
| 123 | +| 10/10 | Genenerates/optimizes local trajectory based on cost map and vehicle dynamics to achieve obstalce avoidance on actual vehicle| |
| 124 | +| 9/10 | Genenerates/optimizes local trajectory based on cost map and vehicle dynamics to achieve obstalce avoidance | |
| 125 | +| 8/10 | Generates local trajectory by using a cost map to achieve obstacle avoidance when obstalces are on the ideal path | |
| 126 | +| 5/10 | Generates local trajectory to make vehicle follow the raceline (ideal path)| |
| 127 | +| 0/10 | No Progress | |
| 128 | + |
| 129 | +Progress: 5/10 |
| 130 | + |
| 131 | +## **Controls: Pure Pursuit** |
| 132 | + |
| 133 | +| Score | Criteria | |
| 134 | +|-------|-------------------------------------------------------------------------| |
| 135 | +| 10/10 | Follows local trajectories and ideal velocities smoothly on actual vehicle | |
| 136 | +| 7/10 | Follows local trajectories and ideal velocities smoothly in simulation | |
| 137 | +| 4/10 | Follows a global trajectory by controlling steerring angle with a constant velocity | |
| 138 | +| 0/10 | No Progress | |
| 139 | + |
| 140 | +Progress: 7/10 |
| 141 | + |
| 142 | +## **Camera Object Detection and Tracking** |
| 143 | + |
| 144 | +| Score | Criteria | |
| 145 | +|-------|-------------------------------------------------------------------------| |
| 146 | +| 10/10 | Camera detects opponent cars and returns bounding boxes reliabilty in real-time with low latency | |
| 147 | +| 6/10 | Camera detects opponent cars and returns bounding boxes | |
| 148 | +| 0/10 | No Progress | |
| 149 | + |
| 150 | +Progress: 0/10 |
| 151 | + |
| 152 | + |
| 153 | +## Scoring Template Summary |
| 154 | + |
| 155 | +| Quest Name | Description | Due Date | Score | |
| 156 | +|------------|-------------|----------|-------| |
| 157 | +| Hardware Setup 1.1 | Fully built with all sensors and hardware mounted and power system working | 2025-08-31 | 10/10 | |
| 158 | +| Hardware Setup 1.2 | Setup interfaces for LiDAR to ouput a ROS /scan topic | 2025-08-31 | 10/10 | |
| 159 | +| Hardware Setup 1.3 | Tune the IMU to correctly how roll, pitch and yaw data and accleration values | 2025-08-31 | 10/10 | |
| 160 | +| Hardware Setup 1.4 | Setup interface with the correct ROS Drivers and have a tuned and accurate odometry output | 2025-08-31 | 10/10 | |
| 161 | +| State Estimation 2.1 | Have a fully functional Extended Kalman Filter working on the physical vehicle | 2025-08-31 | 10/10 | |
| 162 | +| State Estimation 2.2 | Have Particle Filter working on physical vehicle | 2025-08-31 | 5/5 | |
| 163 | +| State Estimation 2.3 | Integrate Camera Object Detection with Localization to use real-time slam mapping | | 0/10 | |
| 164 | +| Mapping: SLAM | Generate a map in image format and a yaml file for the map specifications based on IMU, encoder and LiDAR specifications. | 2025-08-31 | 10/10 | |
| 165 | +| Raceline Generation/Optimization | Generate a optimized raceline as global trajectory (ideal path) for the race car to follow to minimize lap time. | 2025-08-31 | 10/10 | |
| 166 | +| Planning: Lattice Planner | Generate local trajectories for obstacle avoidance and following global trajectory during Racing. | 2025-08-31 | 5/10 | |
| 167 | +| Controls: Pure Pursuit | Controls the vehicle's steering and trottle to following the trajectories generated by the planning module. | 2025-08-31 | 7/10 | |
| 168 | +| Camera Object Detection and Edge Tracking | Camera detects opponent cars and returns bounding boxes reliabilty in real-time with low latency | | 0/10 | |
0 commit comments