Catch market spikes before they happen, powered by AI!
Quant Pulse is a real time AI system designed to predict short term market volatility and micro movements in stocks and crypto it's built for traders, quants, and ai enthusiasts who want to catch market spikes before they happen
-
real time market ddata ingestion from stocks & crypto
-
advanced feature engineering:
-
technical indicators (EMA, RSI, bollinger bands, VWAP)
-
order book features (bid-ask imbalance, liquidity)
-
rolling volatility & momentum
-
-
predicitve models: LSTM, transformer, XGBoost / lightGBM ensemble
-
backtesting module to simulate strategies on historical data
-
live dashboard (streamlit / dash) to visualize predictions and alerts
live market data --> preprocessing --> feature engineering --> predictive model --> alet / dashboard
┌───────────────────┐
│ live Market Data │
└────────┬──────────┘
│
▼
┌───────────────────┐
│ preprocessing │
└────────┬──────────┘
│
▼
┌───────────────────┐
│ feature Engineering│
└────────┬──────────┘
│
▼
┌───────────────────┐
│ predictive Model │
└────────┬──────────┘
│
┌────────┴──────────┐
│ alert / dashboard │
└───────────────────┘
-
data ingestion: yfinance, ccxt, alpha vantage
-
processing & features: pandas, numpy, ta-lib
-
modeling: pyTorch, TensorFlow, XGBoost, LightGBM
-
visualization: plotly, dash, streamlit
-
backtesting: backtrader, zipline-reloaded
-
data/ # raw + processed datasets
-
src/
-
data_loader.py # fetch + preprocess data
-
features.py # feature engineering
-
model.py # training & interference scripts
-
backtest.py # backtesting module
-
dashboard.py # streamlit or Dash dashboard
-
-
notebooks/ # exploratory data analysis
-
requirements.txt # libraries needed for the project
-
README.md # explanation of this project
-
.gitignore
- clone this repo
git clone https://github.com/Youcef3939/QuantPulse.git
cd QuantPulse
- create a virtual environment
python -m venv venv
source venv/bin/activate # Linux / Mac
venv\Scripts\activate # Windows
- install requirements
pip install -r requirements.txt
- run the dashboard
streamlit run dashboard/app.py
- there's also a demo.ipynb in noteboos/ check it out!!
contributions, ideas, and feedback are welcome!
open an issue or submit a PR and let's make Quant Pulse even better together <3
THIS PROJECT IS FOR EDUCATIONAL PURPOSES ONLY
DO NOT AND I MEAN DO NOT USE THIS FOR LIVE TRADING WITHOUT PROPER TESTING AND RISK MANAGMENT!!!
if you find this project useful or fun, feel free to give a ⭐ and fork it!


