⚡ Prebuilt PyTorch + torchvision for Ada GPUs (e.g., RTX 5080)
🔧 free-VPN · Built for CUDA 12.8 · Verified in Gaussian Splatting / SplaTAM
🎓 Educational: How to compile PyTorch forsm_120.
😣 Feedback & Issues: Use GitHub Issues
🙌 Contribute: See CONTRIBUTING.md for guidelines
| Package | Version (tag) | File Size | SHA256 |
|---|---|---|---|
torch |
2.9.0a0+gitc665594 | 235 MB | d8534c88263d8f184afea91dfc4feaf8ee2038ce526861a9f8868e716f8a158 |
torchvision |
0.24.0a0+f52c4f1 | 1.87 MB | 40655e9c93425751e400de656f0c0ceb81383bfbe4f392edce5b56458892fb9f |
conda create -n torch_env python=3.10 -y
conda activate torch_env
pip install ./torch-2.9.0a0+gitc665594-cp310-cp310-linux_x86_64.whl
pip install ./torchvision-0.24.0a0+f52c4f1-cp310-linux_x86_64.whlpython -c "import torch; print(torch.__version__); print(torch.cuda.is_available()); print(torch.cuda.get_device_name(0))"2.9.0a0+gitc665594
True
NVIDIA GeForce RTX 5080 Laptop GPU├── .github/ # GitHub workflows & issue templates
│ ├── workflows/
│ │ └── test-install.yml # CI workflow: test install from .whl
│ └── ISSUE_TEMPLATE/
│ ├── bug_report.yaml # Issue template: bug report
│ ├── config.yml # Issue template config
│ └── feature_request.yaml # Issue template: feature request
│
├── examples/
│ ├── demo_tensor_cuda.py # Demo: test tensor on GPU
│ └── verify_install.py # Verifies torch installation & CUDA
│
├── scripts/
│ ├── build_pytorch.sh # Script to build PyTorch from source
│ └── upload_release.py # Helper to upload .whl to GitHub release
│
├── requirements.txt # Python dependency list (no torch)
├── install_from_whl.sh # One-line installer using .whl
├── build_info.md # Build config & environment metadata
├── CHANGELOG.md # Version history
├── CONTRIBUTING.md # Contribution guidelines
├── LICENSE # License (MIT/Apache/etc.)
├── .gitignore # Git ignored files
└── README.md # Project overview & installation guide
- 👉 See CHANGELOG.md for update history.
- 👉 See build_info.md for full build details (OS, CUDA, commit hash, etc).