v1.0.3
[1.0.3] - 2025-11-28
🎯 100% LLM Retrieval Accuracy Achieved
Major Achievement: ZON now achieves 100% LLM retrieval accuracy while maintaining superior token efficiency over TOON!
Changed
- Explicit Sequential Columns: Disabled automatic sequential column omission (
[id]notation)- All columns now explicitly listed in table headers for better LLM comprehension
- Example:
users:@(5):active,id,lastLogin,name,role(wasusers:@(5)[id]:active,lastLogin,name,role) - Trade-off: +1.7% token increase for 100% LLM accuracy
Performance
- LLM Accuracy: 100% (24/24 questions) vs TOON 100%, JSON 91.7%
- Token Efficiency: 19,995 tokens (5.0% fewer than TOON's 20,988)
- Overall Savings vs TOON: 4.6% (Claude) to 17.6% (GPT-4o)
Quality
- ✅ All unit tests pass (28/28)
- ✅ All roundtrip tests pass (27/27 datasets)
- ✅ No data loss or corruption
- ✅ Production ready
[1.0.3] - 2025-11-27
###ACHIEVEMENT: 8/8 Perfect Sweep vs All Competitors!
Breaking Changes:
- Compact header syntax:
@count:instead of@data(count): - Sequential ID auto-omission:
[id]notation for 1..N sequences - Adaptive format selection based on data complexity
Added
- Sparse Table Encoding: Automatically detects semi-uniform data and uses
key:valuenotation for optional fields - Irregularity Score Calculation: Jaccard similarity-based scoring to choose optimal table format
- Sequential Column Detection: Identifies and omits columns with sequential values (1, 2, 3, ..., N)
- Smart Date Detection: ISO 8601 dates output unquoted for token efficiency
- Context-Aware String Quoting: Only quotes strings when necessary to preserve type semantics
Performance
- Total Tokens: 1,945 (down from 2,081 in v1.0.2)
- -136 tokens saved (-6.5% improvement)
- 8/8 wins vs CSV (previously 4/8 tied)
- 8/8 wins vs TOON (-24.4% better)
- -57.2% better than JSON formatted
- -27.0% better than JSON compact
Benchmark Results (8 datasets)
- Employees: 132 tokens (CSV: 138) - ZON WINS -4.3%
- Time-Series: 245 tokens (CSV: 247) - ZON WINS -0.8%
- GitHub Repos: 148 tokens (CSV: 164) - ZON WINS -9.8%
- Event Logs: 220 tokens (CSV: 231) - ZON WINS -4.8% ← Sparse tables!
- E-commerce: 193 tokens (CSV: 313) - ZON WINS -38.3%
- Hike Data: 62 tokens (CSV: 85) - ZON WINS -27.1%
- Deep Config: 111 tokens (CSV: 182) - ZON WINS -39.0%
- Heavily Nested: 764 tokens (CSV: 1,044) - ZON WINS -26.8%
Competitive Analysis
- vs CSV: -20.1% tokens overall
- vs TOON: -24.4% tokens overall (beats on ALL datasets)
- vs JSON: -57.2% formatted, -27.0% compact
- Real Cost Savings: $4,890/month vs CSV at 1M API calls (GPT-4)
Fixed
- Improved irregular schema detection to enable sparse tables for Event Logs
- Enhanced sparse encoding threshold to support up to 5 optional columns
- Better handling of undefined/null values in standard tables
Documentation
- Added comprehensive competitive analysis vs TOON, CSV, JSON, YAML, XML
- Documented sparse table encoding mechanism
- Added real-world cost savings calculations
- Updated benchmarks with CSV comparison