Skip to content

v1.0.3

Choose a tag to compare

@ronibhakta1 ronibhakta1 released this 28 Nov 22:45
· 37 commits to main since this release
597cf69

[1.0.3] - 2025-11-28

🎯 100% LLM Retrieval Accuracy Achieved

Major Achievement: ZON now achieves 100% LLM retrieval accuracy while maintaining superior token efficiency over TOON!

Changed

  • Explicit Sequential Columns: Disabled automatic sequential column omission ([id] notation)
    • All columns now explicitly listed in table headers for better LLM comprehension
    • Example: users:@(5):active,id,lastLogin,name,role (was users:@(5)[id]:active,lastLogin,name,role)
    • Trade-off: +1.7% token increase for 100% LLM accuracy

Performance

  • LLM Accuracy: 100% (24/24 questions) vs TOON 100%, JSON 91.7%
  • Token Efficiency: 19,995 tokens (5.0% fewer than TOON's 20,988)
  • Overall Savings vs TOON: 4.6% (Claude) to 17.6% (GPT-4o)

Quality

  • ✅ All unit tests pass (28/28)
  • ✅ All roundtrip tests pass (27/27 datasets)
  • ✅ No data loss or corruption
  • ✅ Production ready

[1.0.3] - 2025-11-27

###ACHIEVEMENT: 8/8 Perfect Sweep vs All Competitors!

Breaking Changes:

  • Compact header syntax: @count: instead of @data(count):
  • Sequential ID auto-omission: [id] notation for 1..N sequences
  • Adaptive format selection based on data complexity

Added

  • Sparse Table Encoding: Automatically detects semi-uniform data and uses key:value notation for optional fields
  • Irregularity Score Calculation: Jaccard similarity-based scoring to choose optimal table format
  • Sequential Column Detection: Identifies and omits columns with sequential values (1, 2, 3, ..., N)
  • Smart Date Detection: ISO 8601 dates output unquoted for token efficiency
  • Context-Aware String Quoting: Only quotes strings when necessary to preserve type semantics

Performance

  • Total Tokens: 1,945 (down from 2,081 in v1.0.2)
  • -136 tokens saved (-6.5% improvement)
  • 8/8 wins vs CSV (previously 4/8 tied)
  • 8/8 wins vs TOON (-24.4% better)
  • -57.2% better than JSON formatted
  • -27.0% better than JSON compact

Benchmark Results (8 datasets)

  • Employees: 132 tokens (CSV: 138) - ZON WINS -4.3%
  • Time-Series: 245 tokens (CSV: 247) - ZON WINS -0.8%
  • GitHub Repos: 148 tokens (CSV: 164) - ZON WINS -9.8%
  • Event Logs: 220 tokens (CSV: 231) - ZON WINS -4.8% ← Sparse tables!
  • E-commerce: 193 tokens (CSV: 313) - ZON WINS -38.3%
  • Hike Data: 62 tokens (CSV: 85) - ZON WINS -27.1%
  • Deep Config: 111 tokens (CSV: 182) - ZON WINS -39.0%
  • Heavily Nested: 764 tokens (CSV: 1,044) - ZON WINS -26.8%

Competitive Analysis

  • vs CSV: -20.1% tokens overall
  • vs TOON: -24.4% tokens overall (beats on ALL datasets)
  • vs JSON: -57.2% formatted, -27.0% compact
  • Real Cost Savings: $4,890/month vs CSV at 1M API calls (GPT-4)

Fixed

  • Improved irregular schema detection to enable sparse tables for Event Logs
  • Enhanced sparse encoding threshold to support up to 5 optional columns
  • Better handling of undefined/null values in standard tables

Documentation

  • Added comprehensive competitive analysis vs TOON, CSV, JSON, YAML, XML
  • Documented sparse table encoding mechanism
  • Added real-world cost savings calculations
  • Updated benchmarks with CSV comparison