ICML 2025 | Paper: Restoring Calibration for Aligned Large Language Models: A Calibration-Aware Fine-Tuning Approach
.
├── scripts/ # Training & evaluation scripts
├── train/ # LoRA + Fine-tuning code
├── inference/ # Inference Code
├── data/ # Dataset processing
├── utils/ # Util functions
├── plots/ # Calibration visualizations
└── README.md # This fileconda create -n llm-calibration python=3.10
conda activate llm-calibration
pip install -r requirements.txt@misc{xiao2025restoringcalibrationalignedlarge,
title={Restoring Calibration for Aligned Large Language Models: A Calibration-Aware Fine-Tuning Approach},
author={Jiancong Xiao and Bojian Hou and Zhanliang Wang and Ruochen Jin and Qi Long and Weijie J. Su and Li Shen},
year={2025},
eprint={2505.01997},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2505.01997},
}This project is developed by researchers at the University of Pennsylvania. We thank the open-source community and prior foundational work on LLM calibration, DPO, and RLHF.