Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: cwv perf chart #695

Merged
merged 6 commits into from
Jan 9, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
357 changes: 357 additions & 0 deletions tools/oversight/charts/cwvperf.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,357 @@
import {
Chart, TimeScale, LinearScale, registerables,
// eslint-disable-next-line import/no-unresolved, import/extensions
} from 'chartjs';
// eslint-disable-next-line import/no-unresolved, import/extensions
import 'chartjs-adapter-luxon';
import {
utils,
} from '@adobe/rum-distiller';
import AbstractChart from './chart.js';
import {
truncate,
cssVariable,
cwvInterpolationFn,
INTERPOLATION_THRESHOLD,
} from '../utils.js';

const {
scoreBundle,
} = utils;

Chart.register(TimeScale, LinearScale, ...registerables);

/**
* The CWVPerfChart is a unique type of multi-series bar chart that
* shows both the overall traffic levels as well as the distribution
* of each of the three core web vitals values within the given date
* range.
*/
export default class CWVPerfChart extends AbstractChart {
/**
* Returns a function that can group the data bundles based on the
* configuration of the chart. As this is a timeline chart,
* the grouping is based on the time slot of the bundle, truncated
* to the granularity of the chart.
* @returns {function} A function that can group the data bundles
*/
get groupBy() {
const groupFn = (bundle) => {
const slotTime = new Date(bundle.timeSlot);
return truncate(slotTime, this.chartConfig.unit);
};

groupFn.fillerFn = (existing) => {
const endDate = this.chartConfig.endDate ? new Date(this.chartConfig.endDate) : new Date();

let startDate;
if (!this.chartConfig.startDate) {
// set start date depending on the unit
startDate = new Date(endDate);
// roll back to beginning of time
if (this.chartConfig.unit === 'day') startDate.setDate(endDate.getDate() - 30);
if (this.chartConfig.unit === 'hour') startDate.setDate(endDate.getDate() - 7);
if (this.chartConfig.unit === 'week') startDate.setMonth(endDate.getMonth() - 12);
if (this.chartConfig.unit === 'month') startDate.setMonth(endDate.getMonth() - 1);
} else {
startDate = new Date(this.chartConfig.startDate);
}

const slots = new Set(existing);
const slotTime = new Date(startDate);
// return Array.from(slots);
let maxSlots = 1000;
while (slotTime <= endDate) {
const { unit } = this.chartConfig;
slots.add(truncate(slotTime, unit));
if (this.chartConfig.unit === 'day') slotTime.setDate(slotTime.getDate() + 1);
if (this.chartConfig.unit === 'hour') slotTime.setHours(slotTime.getHours() + 1);
if (this.chartConfig.unit === 'week') slotTime.setDate(slotTime.getDate() + 7);
if (this.chartConfig.unit === 'month') slotTime.setMonth(slotTime.getMonth() + 1);
maxSlots -= 1;
if (maxSlots < 0) {
// eslint-disable-next-line no-console
console.error('Too many slots');
break;
}
}
return Array.from(slots);
};

return groupFn;
}

render() {
// eslint-disable-next-line no-undef
this.chart = new Chart(this.elems.canvas, {
type: 'line',
data: {
labels: [],
datasets: [
{
label: 'Good CWV',
backgroundColor: cssVariable('--spectrum-green-600'),
borderColor: cssVariable('--spectrum-green-600'),
tension: 0.2,
pointRadius: 0,
data: [],
},
{
label: 'Needs Improvement CWV',
backgroundColor: cssVariable('--spectrum-orange-600'),
borderColor: cssVariable('--spectrum-orange-600'),
tension: 0.2,
pointRadius: 0,
data: [],
},
{
label: 'Poor CWV',
backgroundColor: cssVariable('--spectrum-red-600'),
borderColor: cssVariable('--spectrum-red-600'),
tension: 0.2,
pointRadius: 0,
data: [],
},
],
},
options: {
maintainAspectRatio: false,
plugins: {
legend: {
display: false,
},
customCanvasBackgroundColor: {
color: 'white',
},
tooltip: {
callbacks: {
label: (context) => {
const value = context.parsed.y;

const { datasets } = context.chart.data;
const i = context.dataIndex;
const cwvmetric = context.dataset.label.split(' ').pop();
const total = datasets
.filter((dataset) => dataset.label.indexOf('Fake') === -1)
.filter(({ label }) => label.indexOf(cwvmetric) > -1)
.reduce((pv, cv) => (pv || 0) + (cv.data[i] || 0), 0);

if (value === 0 || total === 0) return '';
return (`${context.dataset.label}: ${Math.round((value / total) * 1000) / 10}%`);
},
},
},
},
interaction: {
mode: 'x',
},
animation: {
duration: 300,
},
responsive: true,
scales: {
x: {
type: 'time',
display: true,
grid: {
display: false,
},
border: {
display: false,
},
offset: true,
time: {
displayFormats: {
day: 'EEE, MMM d',
},
unit: 'day',
},
stacked: true,
ticks: {
minRotation: 90,
maxRotation: 90,
autoSkip: false,
},
},
y: {
display: false,
stacked: false,
border: {
display: false,
},
},
},
},
});
}

/**
* Defines the series for the chart based on the data chunks
* @param {DataChunks} dataChunks
*/
defineSeries() {
const { dataChunks } = this;

dataChunks.addSeries('goodCWV', (bundle) => (scoreBundle(bundle) === 'good' ? bundle.weight : undefined));
dataChunks.addSeries('poorCWV', (bundle) => (scoreBundle(bundle) === 'poor' ? bundle.weight : undefined));
dataChunks.addSeries('niCWV', (bundle) => (scoreBundle(bundle) === 'ni' ? bundle.weight : undefined));
dataChunks.addSeries('noCWV', (bundle) => (scoreBundle(bundle) === null ? bundle.weight : undefined));

// interpolated series
dataChunks.addInterpolation(
'iGoodCWV', // name of the series
['goodCWV', 'niCWV', 'poorCWV', 'noCWV'], // calculate from these series
cwvInterpolationFn('goodCWV'), // interpolation function
);

dataChunks.addInterpolation(
'iNiCWV',
['goodCWV', 'niCWV', 'poorCWV', 'noCWV'],
cwvInterpolationFn('niCWV'),
);

dataChunks.addInterpolation(
'iPoorCWV',
['goodCWV', 'niCWV', 'poorCWV', 'noCWV'],
cwvInterpolationFn('poorCWV'),
);

dataChunks.addInterpolation(
'iNoCWV',
['goodCWV', 'niCWV', 'poorCWV', 'noCWV'],
({
goodCWV, niCWV, poorCWV, noCWV,
}) => {
const valueCount = goodCWV.count + niCWV.count + poorCWV.count;
if (valueCount < INTERPOLATION_THRESHOLD) {
// not enough data to interpolate the other values, so
// we report as if there are no CWV at all
const totalWeight = goodCWV.weight + niCWV.weight + poorCWV.weight + noCWV.weight;
return totalWeight;
}
return 0;
},
);
}

async draw() {
const params = new URL(window.location).searchParams;
const view = params.get('view');

// eslint-disable-next-line no-unused-vars
const startDate = params.get('startDate');
const endDate = params.get('endDate');

let customView = 'year';
let unit = 'month';
let units = 12;
if (view === 'custom') {
const diff = endDate ? new Date(endDate).getTime() - new Date(startDate).getTime() : 0;
if (diff < (1000 * 60 * 60 * 24)) {
// less than a day
customView = 'hour';
unit = 'hour';
units = 24;
} else if (diff <= (1000 * 60 * 60 * 24 * 7)) {
// less than a week
customView = 'week';
unit = 'hour';
units = Math.round(diff / (1000 * 60 * 60));
} else if (diff <= (1000 * 60 * 60 * 24 * 31)) {
// less than a month
customView = 'month';
unit = 'day';
units = 30;
} else if (diff <= (1000 * 60 * 60 * 24 * 365 * 3)) {
// less than 3 years
customView = 'week';
unit = 'week';
units = Math.round(diff / (1000 * 60 * 60 * 24 * 7));
}
}

const focus = params.get('focus');

if (this.dataChunks.filtered.length < 1000) {
this.elems.lowDataWarning.ariaHidden = 'false';
} else {
this.elems.lowDataWarning.ariaHidden = 'true';
}

const configs = {
month: {
view,
unit: 'day',
units: 30,
focus,
startDate,
endDate,
},
week: {
view,
unit: 'hour',
units: 24 * 7,
focus,
startDate,
endDate,
},
year: {
view,
unit: 'week',
units: 52,
focus,
startDate,
endDate,
},
custom: {
view: customView,
unit,
units,
focus,
startDate,
endDate,
},
};

const config = configs[view];

this.config = { ...config, ...this.config };
this.defineSeries();

// group by date, according to the chart config
const group = this.dataChunks.group(this.groupBy);
const chartLabels = Object.keys(group).sort();

const {
iGoodCWVs,
iNiCWVs,
iPoorCWVs,
} = Object.entries(this.dataChunks.aggregates)
.sort(([a], [b]) => a.localeCompare(b))
.reduce((acc, [, totals]) => {
const t = (totals.iGoodCWV.weight + totals.iNiCWV.weight + totals.iPoorCWV.weight) || 1;
acc.iGoodCWVs.push(totals.iGoodCWV.weight / t);
acc.iNiCWVs.push(totals.iNiCWV.weight / t);
acc.iPoorCWVs.push(totals.iPoorCWV.weight / t);
return acc;
}, {
iGoodCWVs: [],
iNiCWVs: [],
iPoorCWVs: [],
});

this.chart.data.datasets[0].data = iGoodCWVs;
this.chart.data.datasets[1].data = iNiCWVs;
this.chart.data.datasets[2].data = iPoorCWVs;

this.chart.data.labels = chartLabels;
this.chart.options.scales.x.time.unit = config.unit;

this.min = this.chart.options.scales.y.min;
this.stepSize = undefined;
this.clsAlreadyLabeled = false;
this.lcpAlreadyLabeled = false;

this.chart.update();
}
}
Loading
Loading