![](https://private-user-images.githubusercontent.com/120780494/293570080-e585e0f8-9f52-483a-9665-2001efdd6264.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk5NzQ5MzEsIm5iZiI6MTczOTk3NDYzMSwicGF0aCI6Ii8xMjA3ODA0OTQvMjkzNTcwMDgwLWU1ODVlMGY4LTlmNTItNDgzYS05NjY1LTIwMDFlZmRkNjI2NC5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjE5JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxOVQxNDE3MTFaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1iNmYxMjk0NjU2ZjdlYjk4ZGU0M2RkOGY3NTk0Yzg4YTI2MWQ1MzM1OWZkZTFhZTYxMjJiYTU5MGZmZGFiZGIxJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.Z-16BYHZb7OuBpwhqJjZcNbEzkSCTmFBBjGoodHLcA0)
This Web-Application was created to demonstrate and analyse the graph theory based recommender model (https://github.com/05kashyap/SocialNet_RecSys).
It has been hosted at: http://kashyap05.pythonanywhere.com/
Project Report:
Evaluation Metrics | Result |
---|---|
Accuracy | 0.7877 |
Precision (at k=5) | 1.0 |
Recall (at k=5) | 0.538095 |
F1 Score | 0.6996 |
Graph Matching Metrics | Result |
---|---|
GED | 0.6 |
Edge overlap ratio | 0.91044 |
Recall (at k=5) | 0.538095 |
Structural Hammering Distance | 0.19999 |
Setup Instructions(To run the application locally): (Ideally inside a virtual env)
- Clone the repository
git clone [https://github.com/05kashyap/GDSC_meme_feed](https://github.com/05kashyap/GraphLink.git)
- Install requirements.txt
pip install -r requirements.txt
- Make migrations
python3 manage.py makemigrations
- Apply migrations
python3 manage.py migrate
- Apply migrations
python3 manage.py runserver