|
| 1 | +{-# OPTIONS --without-K --safe #-} |
| 2 | + |
| 3 | +open import Categories.Category using (Category) |
| 4 | +open import Categories.Functor using (Functor) |
| 5 | + |
| 6 | +open import Level |
| 7 | + |
| 8 | +module Categories.Diagram.End.Instance.NaturalTransformations |
| 9 | + {o ℓ e o′ ℓ′ e′} |
| 10 | + {C : Category o ℓ e} |
| 11 | + {D : Category o′ (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′)} |
| 12 | + (F G : Functor C D) |
| 13 | + where |
| 14 | + |
| 15 | +open import Categories.Category.Construction.Functors using (Functors) |
| 16 | +open import Categories.Diagram.End using (End) |
| 17 | +open import Categories.Diagram.Wedge using (Wedge) |
| 18 | +open import Categories.Functor.Bifunctor using (reduce-×) |
| 19 | +open import Categories.Functor.Hom using (Hom[_][-,-]; Hom[_][_,_]) |
| 20 | +open import Categories.Morphism.Reasoning D |
| 21 | +open import Categories.NaturalTransformation using (NaturalTransformation) |
| 22 | + |
| 23 | +open import Function.Bundles using (Func; _⟨$⟩_) |
| 24 | + |
| 25 | +private |
| 26 | + module F = Functor F |
| 27 | + module G = Functor G |
| 28 | + |
| 29 | +open Category C using (id) |
| 30 | +open Category D hiding (id) |
| 31 | +open HomReasoning |
| 32 | +open NaturalTransformation |
| 33 | +open Wedge |
| 34 | + |
| 35 | +-- For appropriately sized categories, the set of natural |
| 36 | +-- transformations from F to G forms the end ∫ₓ F x ⇒ G x |
| 37 | +-- This is Theorem 1.4.1 of Coend calculus |
| 38 | + |
| 39 | +naturalTransformations : End (reduce-× Hom[ D ][-,-] F.op G) |
| 40 | +naturalTransformations = record |
| 41 | + { wedge = record |
| 42 | + { E = Hom[ Functors C D ][ F , G ] |
| 43 | + ; dinatural = record |
| 44 | + { α = λ X → record |
| 45 | + { to = λ nt → η nt X |
| 46 | + ; cong = λ eq → eq |
| 47 | + } |
| 48 | + ; commute = λ {X Y} f {nt} → begin |
| 49 | + G.₁ f ∘ η nt X ∘ F.₁ id ≈⟨ refl⟩∘⟨ elimʳ F.identity ⟩ |
| 50 | + G.₁ f ∘ η nt X ≈⟨ sym-commute nt f ⟩ |
| 51 | + η nt Y ∘ F.₁ f ≈⟨ pushˡ (introˡ G.identity) ⟩ |
| 52 | + G.₁ id ∘ η nt Y ∘ F.₁ f ∎ |
| 53 | + ; op-commute = λ {X Y} f {nt} → begin |
| 54 | + G.₁ id ∘ η nt Y ∘ F.₁ f ≈⟨ pullˡ (elimˡ G.identity) ⟩ |
| 55 | + η nt Y ∘ F.₁ f ≈⟨ commute nt f ⟩ |
| 56 | + G.₁ f ∘ η nt X ≈⟨ refl⟩∘⟨ introʳ F.identity ⟩ |
| 57 | + G.₁ f ∘ η nt X ∘ F.₁ id ∎ |
| 58 | + } |
| 59 | + } |
| 60 | + ; factor = λ W → record |
| 61 | + { to = λ e → record |
| 62 | + { η = λ X → dinatural.α W X ⟨$⟩ e |
| 63 | + ; commute = λ {X Y} f → begin |
| 64 | + (dinatural.α W Y ⟨$⟩ e) ∘ F.₁ f ≈⟨ pushˡ (introˡ G.identity) ⟩ |
| 65 | + G.₁ id ∘ (dinatural.α W Y ⟨$⟩ e) ∘ F.₁ f ≈⟨ dinatural.op-commute W f ⟩ |
| 66 | + G.₁ f ∘ (dinatural.α W X ⟨$⟩ e) ∘ F.₁ id ≈⟨ refl⟩∘⟨ elimʳ F.identity ⟩ |
| 67 | + G.₁ f ∘ (dinatural.α W X ⟨$⟩ e) ∎ |
| 68 | + ; sym-commute = λ {X Y} f → begin |
| 69 | + G.₁ f ∘ (dinatural.α W X ⟨$⟩ e) ≈⟨ refl⟩∘⟨ introʳ F.identity ⟩ |
| 70 | + G.₁ f ∘ (dinatural.α W X ⟨$⟩ e) ∘ F.₁ id ≈⟨ dinatural.commute W f ⟩ |
| 71 | + G.₁ id ∘ (dinatural.α W Y ⟨$⟩ e) ∘ F.₁ f ≈⟨ pullˡ (elimˡ G.identity) ⟩ |
| 72 | + (dinatural.α W Y ⟨$⟩ e) ∘ F.₁ f ∎ |
| 73 | + } |
| 74 | + ; cong = λ eq → Func.cong (dinatural.α W _) eq |
| 75 | + } |
| 76 | + ; universal = Equiv.refl |
| 77 | + ; unique = λ eq → Equiv.sym eq |
| 78 | + } |
0 commit comments