Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
115 changes: 115 additions & 0 deletions src/Categories/Monad/Construction/Action.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
-- The monad of actions of a monoid in a monoidal category
-- See https://ncatlab.org/nlab/show/action+monad

-- With the Cartesian monoidal structure on Sets or Setoids, this gives us the
-- Writer monad familiar from Haskell. With the Cocartesian monoidal structure,
-- noting that all objects in that monoidal category are monoids in a unique
-- way, this gives us the Either monad.

{-# OPTIONS --safe --without-K #-}

open import Categories.Category.Core using (Category)
open import Categories.Category.Monoidal.Core using (Monoidal)

module Categories.Monad.Construction.Action {o ℓ e} {C : Category o ℓ e} (CM : Monoidal C) where

open import Categories.Category.Monoidal.Properties CM using (coherence-inv₁)
open import Categories.Category.Monoidal.Reasoning CM
open import Categories.Category.Monoidal.Utilities CM using (module Shorthands; pentagon-inv; triangle-inv)
open import Categories.Monad using (Monad)
open import Categories.Monad.Morphism using (Monad⇒-id)
open import Categories.Morphism.Reasoning C
open import Categories.NaturalTransformation using (ntHelper)
open import Categories.Functor using (Endofunctor; Functor)
open import Categories.Functor.Bifunctor.Properties using ([_]-commute; [_]-decompose₁)
open import Categories.Functor.Properties using ([_]-resp-∘; [_]-resp-square; [_]-resp-inverse)
open import Categories.Object.Monoid CM using (Monoid; Monoid⇒)
open import Function.Base using (_$_)

open Category C
open Monoidal CM
open Shorthands

module _ (m : Monoid) where

private
module m = Monoid m

ActionF : Endofunctor C
ActionF = m.Carrier ⊗-

private
module A = Functor ActionF

η : ∀ X → X ⇒ A.₀ X
η _ = m.η ⊗₁ id ∘ λ⇐

η-commute : ∀ {X Y} (f : X ⇒ Y) → η Y ∘ f ≈ A.₁ f ∘ η X
η-commute f = glue (Equiv.sym [ ⊗ ]-commute) unitorˡ-commute-to

μ : ∀ X → A.₀ (A.₀ X) ⇒ A.₀ X
μ _ = m.μ ⊗₁ id ∘ α⇐

μ-commute : ∀ {X Y} (f : X ⇒ Y) → μ Y ∘ A.₁ (A.₁ f) ≈ A.₁ f ∘ μ X
μ-commute f = glue (Equiv.sym [ ⊗ ]-commute) (assoc-commute-to ○ ∘-resp-≈ˡ (⊗-resp-≈ˡ ⊗.identity))

μ-assoc : ∀ {X} → μ X ∘ A.₁ (μ X) ≈ μ X ∘ μ (A.₀ X)
μ-assoc = begin
(m.μ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ (m.μ ⊗₁ id ∘ α⇐) ≈⟨ refl⟩∘⟨ Functor.homomorphism (_ ⊗-) ⟩
(m.μ ⊗₁ id ∘ α⇐) ∘ (id ⊗₁ (m.μ ⊗₁ id) ∘ id ⊗₁ α⇐) ≈⟨ extend² assoc-commute-to ⟩
(m.μ ⊗₁ id ∘ (id ⊗₁ m.μ) ⊗₁ id) ∘ (α⇐ ∘ id ⊗₁ α⇐) ≈⟨ [ -⊗ _ ]-resp-square (switch-fromtoʳ associator (assoc ○ Equiv.sym m.assoc)) ⟩∘⟨refl ⟩
((m.μ ∘ m.μ ⊗₁ id) ⊗₁ id ∘ α⇐ ⊗₁ id) ∘ (α⇐ ∘ id ⊗₁ α⇐) ≈⟨ pullʳ (sym-assoc ○ pentagon-inv) ⟩
(m.μ ∘ m.μ ⊗₁ id) ⊗₁ id ∘ (α⇐ ∘ α⇐) ≈⟨ Functor.homomorphism (-⊗ _) ⟩∘⟨refl ⟩
(m.μ ⊗₁ id ∘ (m.μ ⊗₁ id) ⊗₁ id) ∘ (α⇐ ∘ α⇐) ≈⟨ extend² (Equiv.sym assoc-commute-to ○ ∘-resp-≈ʳ (⊗-resp-≈ʳ ⊗.identity)) ⟩
(m.μ ⊗₁ id ∘ α⇐) ∘ (m.μ ⊗₁ id ∘ α⇐) ∎

μ-identityˡ : ∀ {X} → μ X ∘ A.₁ (η X) ≈ id
μ-identityˡ = begin
(m.μ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ (m.η ⊗₁ id ∘ λ⇐) ≈⟨ refl⟩∘⟨ Functor.homomorphism (_ ⊗-) ⟩
(m.μ ⊗₁ id ∘ α⇐) ∘ (id ⊗₁ (m.η ⊗₁ id) ∘ id ⊗₁ λ⇐) ≈⟨ extend² assoc-commute-to ⟩
(m.μ ⊗₁ id ∘ (id ⊗₁ m.η) ⊗₁ id) ∘ (α⇐ ∘ id ⊗₁ λ⇐) ≈⟨ [ -⊗ _ ]-resp-∘ (Equiv.sym m.identityʳ) ⟩∘⟨ triangle-inv ⟩
ρ⇒ ⊗₁ id ∘ ρ⇐ ⊗₁ id ≈⟨ [ -⊗ _ ]-resp-inverse unitorʳ.isoʳ ⟩
id ∎

μ-identityʳ : ∀ {X} → μ X ∘ η (A.₀ X) ≈ id
μ-identityʳ = begin
(m.μ ⊗₁ id ∘ α⇐) ∘ (m.η ⊗₁ id ∘ λ⇐) ≈⟨ extend² (∘-resp-≈ʳ (⊗-resp-≈ʳ (Equiv.sym ⊗.identity)) ○ assoc-commute-to) ⟩
(m.μ ⊗₁ id ∘ (m.η ⊗₁ id) ⊗₁ id) ∘ (α⇐ ∘ λ⇐) ≈⟨ [ -⊗ _ ]-resp-∘ (Equiv.sym m.identityˡ) ⟩∘⟨ coherence-inv₁ ⟩
λ⇒ ⊗₁ id ∘ λ⇐ ⊗₁ id ≈⟨ [ -⊗ _ ]-resp-inverse unitorˡ.isoʳ ⟩
id ∎

ActionM : Monad C
ActionM = record
{ F = ActionF
; η = ntHelper record
{ η = η
; commute = η-commute
}
; μ = ntHelper record
{ η = μ
; commute = μ-commute
}
; assoc = μ-assoc
; sym-assoc = Equiv.sym μ-assoc
; identityˡ = μ-identityˡ
; identityʳ = μ-identityʳ
}

-- a monoid morphism induces a monad morphism
Monoid⇒-Monad⇒ : ∀ {m n} → Monoid⇒ m n → Monad⇒-id (ActionM n) (ActionM m)
Monoid⇒-Monad⇒ {m} {n} f = record
{ α = ntHelper record
{ η = λ _ → arr ⊗₁ id
; commute = λ _ → Equiv.sym [ ⊗ ]-commute
}
; unit-comp = pullˡ ([ -⊗ _ ]-resp-∘ preserves-η)
; mult-comp = begin
arr ⊗₁ id ∘ m.μ ⊗₁ id ∘ α⇐ ≈⟨ extendʳ ([ -⊗ _ ]-resp-square preserves-μ) ⟩
n.μ ⊗₁ id ∘ (arr ⊗₁ arr) ⊗₁ id ∘ α⇐ ≈⟨ pullʳ assoc-commute-to ⟨
(n.μ ⊗₁ id ∘ α⇐) ∘ arr ⊗₁ (arr ⊗₁ id) ≈⟨ refl⟩∘⟨ [ ⊗ ]-decompose₁ ⟩
(n.μ ⊗₁ id ∘ α⇐) ∘ arr ⊗₁ id ∘ id ⊗₁ (arr ⊗₁ id) ∎
}
where
module m = Monoid m
module n = Monoid n
open Monoid⇒ f