@@ -14,7 +14,7 @@ open import Cubical.Data.Sigma
1414
1515open import Cubical.HITs.PropositionalTruncation as PT
1616open import Cubical.Data.NatPlusOne
17-
17+ open import Cubical.Data.Nat as ℕ hiding (_·_;_+_)
1818
1919open import Cubical.Data.Rationals as ℚ using (ℚ ; [_/_])
2020open import Cubical.Data.Rationals.Order as ℚ using
@@ -354,23 +354,23 @@ C·Derivative' C x f f'x F =
354354-- → IsContinuous f
355355-- hasDer→isCont f f' df ε = {!df!}
356356
357- -- -- derivative-^ⁿ : ∀ n x →
358- -- -- derivativeOf (_^ⁿ (suc n)) at x
359- -- -- is (fromNat (suc n) ·ᵣ (x ^ⁿ n))
360- -- -- derivative-^ⁿ zero x =
361- -- -- substDer₂
362- -- -- (λ _ → sym (·IdL _))
363- -- -- (sym (·IdL _))
364- -- -- (idDerivative x)
365- -- -- derivative-^ⁿ (suc n) x =
366- -- -- substDer₂ (λ _ → refl)
367- -- -- (+ᵣComm _ _ ∙ cong₂ _+ᵣ_
368- -- -- (·ᵣComm _ _) (sym (·ᵣAssoc _ _ _)) ∙
369- -- -- sym (·DistR+ _ _ _) ∙
370- -- -- cong (_·ᵣ ((x ^ⁿ n) ·ᵣ idfun ℝ x))
371- -- -- (cong rat (ℚ.ℕ+→ℚ+ _ _)))
372- -- -- (·Derivative _ _ _ _ _ IsContinuousId
373- -- -- (derivative-^ⁿ n x) (idDerivative x))
357+ derivative-^ⁿ : ∀ n x →
358+ derivativeOf (_^ⁿ (suc n)) at x
359+ is (fromNat (suc n) ·ᵣ (x ^ⁿ n))
360+ derivative-^ⁿ zero x =
361+ substDer₂
362+ (λ _ → sym (·IdL _))
363+ (sym (·IdL _))
364+ (idDerivative x)
365+ derivative-^ⁿ (suc n) x =
366+ substDer₂ (λ _ → refl)
367+ (+ᵣComm _ _ ∙ cong₂ _+ᵣ_
368+ (·ᵣComm _ _) (sym (·ᵣAssoc _ _ _)) ∙
369+ sym (·DistR+ _ _ _) ∙
370+ cong (_·ᵣ ((x ^ⁿ n) ·ᵣ idfun ℝ x))
371+ (cong rat (ℚ.ℕ+→ℚ+ _ _)))
372+ (·Derivative _ _ _ _ _ IsContinuousId
373+ (derivative-^ⁿ n x) (idDerivative x))
374374
375375-- -- -- chainRule : ∀ x f f'gx g g'x
376376-- -- -- → derivativeOf g at x is g'x
0 commit comments