Skip to content
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions Cubical/Algebra/CommRing/Ideal/Base.agda
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,12 @@ module CommIdeal (R' : CommRing ℓ) where
∑Closed I {n = zero} _ _ = I .snd .contains0
∑Closed I {n = suc n} V h = I .snd .+Closed (h zero) (∑Closed I (V ∘ suc) (h ∘ suc))

open Exponentiation R'

^sucClosed : (I : CommIdeal) (x : R) {n : ℕ}
→ x ∈ I → x ^ suc n ∈ I
^sucClosed I x x∈I = subst-∈ I (·Comm _ x) (·Closed (snd I) _ x∈I)

0Ideal : CommIdeal
fst 0Ideal x = (x ≡ 0r) , is-set _ _
+Closed (snd 0Ideal) x≡0 y≡0 = cong₂ (_+_) x≡0 y≡0 ∙ +IdR _
Expand Down
3 changes: 3 additions & 0 deletions Cubical/Algebra/CommRing/Ideal/Sum.agda
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,9 @@ module IdealSum (R' : CommRing ℓ) where
·iComm⊆ I J x = map λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ)
→ (n , (β , α) , ∀βi∈J , ∀αi∈I , x≡∑αβ ∙ ∑Ext (λ i → ·Comm (α i) (β i)))

·iRincl : ∀ (I J : CommIdeal) → (I ·i J) ⊆ J
·iRincl I J x x∈IJ = ·iLincl J I x (·iComm⊆ I J x x∈IJ)

·iComm : ∀ (I J : CommIdeal) → I ·i J ≡ J ·i I
·iComm I J = CommIdeal≡Char (·iComm⊆ I J) (·iComm⊆ J I)

Expand Down
11 changes: 11 additions & 0 deletions Cubical/Algebra/CommRing/RadicalIdeal.agda
Original file line number Diff line number Diff line change
Expand Up @@ -99,8 +99,12 @@ module RadicalIdeal (R' : CommRing ℓ) where
1∈√→1∈ : ∀ (I : CommIdeal) → 1r ∈ √ I → 1r ∈ I
1∈√→1∈ I = PT.rec (∈-isProp (fst I) _) λ (n , 1ⁿ∈I) → subst-∈ I (1ⁿ≡1 n) 1ⁿ∈I

√Resp⊆ : (I J : CommIdeal) → I ⊆ J → √ I ⊆ √ J
√Resp⊆ I J I⊆J x = map (map-snd λ {a} → I⊆J (x ^ a))

-- important lemma for characterization of the Zariski lattice
open KroneckerDelta (CommRing→Ring R')

√FGIdealCharLImpl : {n : ℕ} (V : FinVec R n) (I : CommIdeal)
→ √ ⟨ V ⟩[ R' ] ⊆ √ I → (∀ i → V i ∈ √ I)
√FGIdealCharLImpl V I √⟨V⟩⊆√I i = √⟨V⟩⊆√I _ (∈→∈√ ⟨ V ⟩[ R' ] (V i)
Expand Down Expand Up @@ -234,3 +238,10 @@ module RadicalIdeal (R' : CommRing ℓ) where

√·Absorb+ : ∀ (I J : CommIdeal) → √ (I ·i (I +i J)) ≡ √ I
√·Absorb+ I J = CommIdeal≡Char (√·Absorb+LIncl I J) (√·Absorb+RIncl I J)

√·ContrLIncl : ∀ (I J : CommIdeal) → √ (√ I ·i √ J) ⊆ √ (I ·i J)
√·ContrLIncl I J x = √·RContrLIncl I J x ∘ subst (x ∈_) (√·LContr I (√ J))

√Pres·LIncl : ∀ (I J : CommIdeal) → (√ I ·i √ J) ⊆ √ (I ·i J)
√Pres·LIncl I J x = √·ContrLIncl I J x ∘ ∈→∈√ (√ I ·i √ J) x

Loading