Skip to content
Open

Heap #1277

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions Cubical/Algebra/Heap.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
module Cubical.Algebra.Heap where

open import Cubical.Algebra.Heap.Base public
open import Cubical.Algebra.Heap.Properties public
92 changes: 92 additions & 0 deletions Cubical/Algebra/Heap/Base.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
module Cubical.Algebra.Heap.Base where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.SIP

open import Cubical.Reflection.RecordEquiv

open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe

open import Cubical.HITs.PropositionalTruncation

private variable
ℓ ℓ' : Level
X Y : Type ℓ

record IsHeap {H : Type ℓ} ([_,_,_] : H → H → H → H) : Type ℓ where
no-eta-equality
constructor isheap

field
is-set : isSet H
assoc : ∀ a b c d e → [ a , b , [ c , d , e ] ] ≡ [ [ a , b , c ] , d , e ]
idl : ∀ a b → [ a , a , b ] ≡ b
idr : ∀ a b → [ a , b , b ] ≡ a
inhab : ∥ H ∥₁

unquoteDecl IsHeapIsoΣ = declareRecordIsoΣ IsHeapIsoΣ (quote IsHeap)

record HeapStr (H : Type ℓ) : Type ℓ where
constructor heapstr

field
[_,_,_] : H → H → H → H
isHeap : IsHeap [_,_,_]

open IsHeap isHeap public

Heap : ∀ ℓ → Type (ℓ-suc ℓ)
Heap ℓ = TypeWithStr ℓ HeapStr

record IsHeapHom {X : Type ℓ} {Y : Type ℓ'} (H : HeapStr X) (f : X → Y) (H' : HeapStr Y)
: Type (ℓ-max ℓ ℓ') where

constructor makeIsHeapHom

private
module H = HeapStr H
module H' = HeapStr H'
field
pres-[] : (a b c : X) → f H.[ a , b , c ] ≡ H'.[ f a , f b , f c ]

unquoteDecl IsHeapHomIsoΣ = declareRecordIsoΣ IsHeapHomIsoΣ (quote IsHeapHom)

isPropIsHeap : {H : Type ℓ} ([_,_,_] : H → H → H → H) → isProp (IsHeap [_,_,_])
isPropIsHeap [_,_,_] = isOfHLevelRetractFromIso 1 IsHeapIsoΣ $ isPropΣ isPropIsSet λ is-set →
isProp×3 (isPropΠ5 λ _ _ _ _ _ → is-set _ _)
(isPropΠ2 λ _ _ → is-set _ _)
(isPropΠ2 λ _ _ → is-set _ _)
isPropPropTrunc

isPropIsHeapHom : (H : HeapStr X) (f : X → Y) (H' : HeapStr Y) → isProp (IsHeapHom H f H')
isPropIsHeapHom H f H' = isOfHLevelRetractFromIso 1 IsHeapHomIsoΣ $
isPropΠ3 λ _ _ _ → H' .is-set _ _
where open HeapStr

IsHeapEquiv : {X : Type ℓ} {Y : Type ℓ'} (H : HeapStr X) (e : X ≃ Y) (H' : HeapStr Y) → Type _
IsHeapEquiv H e H' = IsHeapHom H (e .fst) H'

HeapEquiv : (H : Heap ℓ) (H' : Heap ℓ') → Type _
HeapEquiv H H' = Σ[ e ∈ ⟨ H ⟩ ≃ ⟨ H' ⟩ ] IsHeapEquiv (str H) e (str H')

𝒮ᴰ-Heap : DUARel (𝒮-Univ ℓ) HeapStr ℓ
𝒮ᴰ-Heap = 𝒮ᴰ-Record (𝒮-Univ _) IsHeapEquiv
(fields:
data[ [_,_,_] ∣ autoDUARel _ _ ∣ pres-[] ]
prop[ isHeap ∣ (λ _ _ → isPropIsHeap _) ])
where
open HeapStr
open IsHeapHom

HeapPath : (H H' : Heap ℓ) → HeapEquiv H H' ≃ (H ≡ H')
HeapPath = ∫ 𝒮ᴰ-Heap .UARel.ua

uaHeap : {H H' : Heap ℓ} → HeapEquiv H H' → H ≡ H'
uaHeap = HeapPath _ _ .fst
167 changes: 167 additions & 0 deletions Cubical/Algebra/Heap/Properties.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
{--
Defines the structure group of a heap,
proves that a group is equivalently a pointed heap.
TODO: A heap is equivalently a group equipped with a torsor
--}

module Cubical.Algebra.Heap.Properties where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Structure

open import Cubical.HITs.PropositionalTruncation as PT

open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.GroupPath

open import Cubical.Algebra.Heap.Base

private variable
ℓ : Level

module _ (G : Group ℓ) where
open HeapStr
open IsHeap
open GroupStr (snd G) renaming (is-set to G-is-set)

GroupHasHeapStr : HeapStr ⟨ G ⟩
GroupHasHeapStr .[_,_,_] a b c = a · inv b · c
GroupHasHeapStr .isHeap .is-set = G-is-set
GroupHasHeapStr .isHeap .assoc a b c d e =
a · inv b · c · inv d · e ≡⟨ ·Assoc a (inv b) (c · inv d · e) ⟩
(a · inv b) · c · inv d · e ≡⟨ ·Assoc (a · inv b) c (inv d · e) ⟩
((a · inv b) · c) · inv d · e ≡⟨ congL _·_ (sym (·Assoc a (inv b) c)) ⟩
(a · inv b · c) · inv d · e ∎
GroupHasHeapStr .isHeap .idl a b = ·GroupAutomorphismL G a .Iso.rightInv b
GroupHasHeapStr .isHeap .idr a b = congR _·_ (·InvL b) ∙ ·IdR a
GroupHasHeapStr .isHeap .inhab = ∣ 1g ∣₁

GroupHeap : Heap ℓ
GroupHeap = ⟨ G ⟩ , GroupHasHeapStr

module HeapTheory (H : Heap ℓ) where
open HeapStr (snd H) public

wriggle : ∀ a b c d → [ [ a , b , c ] , d , [ d , c , b ] ] ≡ a
wriggle a b c d =
[ [ a , b , c ] , d , [ d , c , b ] ] ≡⟨ assoc [ a , b , c ] d d c b ⟩
[ [ [ a , b , c ] , d , d ] , c , b ] ≡⟨ cong [_, c , b ] (idr [ a , b , c ] d) ⟩
[ [ a , b , c ] , c , b ] ≡⟨ sym (assoc a b c c b) ⟩
[ a , b , [ c , c , b ] ] ≡⟨ cong [ a , b ,_] (idl c b) ⟩
[ a , b , b ] ≡⟨ idr a b ⟩
a ∎

-- Wagner's theory of generalized heaps, theorem 8.2.13
assocl : ∀ a b c d e → [ a , [ d , c , b ] , e ] ≡ [ [ a , b , c ] , d , e ]
assocl a b c d e =
[ a , [ d , c , b ] , e ] ≡⟨ cong [_, [ d , c , b ] , e ] (sym (wriggle a b c d)) ⟩
[ [ [ a , b , c ] , d , [ d , c , b ] ] , [ d , c , b ] , e ]
≡⟨ sym (assoc [ a , b , c ] d [ d , c , b ] [ d , c , b ] e) ⟩
[ [ a , b , c ] , d , [ [ d , c , b ] , [ d , c , b ] , e ] ]
≡⟨ cong [ [ a , b , c ] , d ,_] (idl [ d , c , b ] e) ⟩
[ [ a , b , c ] , d , e ] ∎

assocr : ∀ a b c d e → [ a , [ d , c , b ] , e ] ≡ [ a , b , [ c , d , e ] ]
assocr a b c d e =
[ a , [ d , c , b ] , e ] ≡⟨ assocl a b c d e ⟩
[ [ a , b , c ] , d , e ] ≡⟨ sym (assoc a b c d e) ⟩
[ a , b , [ c , d , e ] ] ∎

idlr : ∀ a b c → [ a , [ b , c , a ] , b ] ≡ c
idlr a b c =
[ a , [ b , c , a ] , b ] ≡⟨ assocr a a c b b ⟩
[ a , a , [ c , b , b ] ] ≡⟨ idl a [ c , b , b ] ⟩
[ c , b , b ] ≡⟨ idr c b ⟩
c ∎

StructureGroup : Heap ℓ → Group ℓ
StructureGroup H = go inhab
module StructureGroup where
open GroupStr hiding (is-set)
open HeapTheory H

fromPoint : ⟨ H ⟩ → Group _
fromPoint e .fst = ⟨ H ⟩
fromPoint e .snd .1g = e
fromPoint e .snd ._·_ a b = [ a , e , b ]
fromPoint e .snd .inv a = [ e , a , e ]
fromPoint e .snd .isGroup = makeIsGroup is-set
(λ x y z → assoc x e y e z)
(λ x → idr x e)
(λ x → idl e x)
(λ x → assoc x e e x e ∙∙ cong [_, x , e ] (idr x e) ∙∙ idl x e)
(λ x → sym (assoc e x e e x) ∙∙ cong [ e , x ,_] (idl e x) ∙∙ idr e x)

φ : ∀ e e' → GroupHom (fromPoint e) (fromPoint e')
φ e e' .fst x = [ e' , e , x ]
φ e e' .snd = makeIsGroupHom λ x y →
[ e' , e , [ x , e , y ] ] ≡⟨ assoc e' e x e y ⟩
[ [ e' , e , x ] , e , y ] ≡⟨ congR [_,_, y ] (sym (idr e e')) ⟩
[ [ e' , e , x ] , [ e , e' , e' ] , y ] ≡⟨ assocr [ e' , e , x ] e' e' e y ⟩
[ [ e' , e , x ] , e' , [ e' , e , y ] ] ∎

φ-coh : ∀ e e' e'' x → φ e' e'' .fst (φ e e' .fst x) ≡ φ e e'' .fst x
φ-coh e e' e'' x =
[ e'' , e' , [ e' , e , x ] ] ≡⟨ sym (assocr e'' e' e' e x) ⟩
[ e'' , [ e , e' , e' ] , x ] ≡⟨ cong [ e'' ,_, x ] (idr e e') ⟩
[ e'' , e , x ] ∎

φ-eqv : ∀ e e' → isEquiv (φ e e' .fst)
φ-eqv e e' = isoToIsEquiv (iso (φ e e' .fst) (φ e' e .fst) (lemma e e') (lemma e' e)) where

lemma : ∀ e e' x → φ e e' .fst (φ e' e .fst x) ≡ x
lemma e e' x = φ-coh e' e e' x ∙ idl e' x

go : ∥ ⟨ H ⟩ ∥₁ → Group _
go = PropTrunc→Group fromPoint (λ e e' → (φ e e' .fst , φ-eqv e e') , φ e e' .snd) φ-coh

StructureGroupOfGroupHeap : (G : Group ℓ) → GroupEquiv (StructureGroup (GroupHeap G)) G
StructureGroupOfGroupHeap G = idEquiv _ , makeIsGroupHom λ x y →
[ x , 1g , y ] ≡⟨⟩
x · inv 1g · y ≡⟨ congR _·_ (congL _·_ inv1g) ⟩
x · 1g · y ≡⟨ congR _·_ (·IdL y) ⟩
x · y ∎
where
open GroupStr (G .snd)
open GroupTheory G
open HeapTheory (GroupHeap G)

GroupHeapOfStructureGroup : (H : Heap ℓ)
→ ∥ HeapEquiv (GroupHeap (StructureGroup H)) H ∥₁ -- unnatural isomorphism
GroupHeapOfStructureGroup H = go inhab
module GroupHeapOfStructureGroup where
open HeapTheory H

fromPoint : (e : ⟨ H ⟩) → HeapEquiv (GroupHeap (StructureGroup.fromPoint H e)) H
fromPoint e = idEquiv _ , makeIsHeapHom λ a b c →
[ a , e , [ [ e , b , e ] , e , c ] ] ≡⟨ cong [ a , e ,_] (sym (assoc e b e e c)) ⟩
[ a , e , [ e , b , [ e , e , c ] ] ] ≡⟨ cong [ a , e ,_] (cong [ e , b ,_] (idl e c)) ⟩
[ a , e , [ e , b , c ] ] ≡⟨ assoc a e e b c ⟩
[ [ a , e , e ] , b , c ] ≡⟨ cong [_, b , c ] (idr a e) ⟩
[ a , b , c ] ∎

go : (p : ∥ ⟨ H ⟩ ∥₁) → ∥ HeapEquiv (GroupHeap (StructureGroup.go H p)) H ∥₁
go = PT.elim (λ _ → isPropPropTrunc) λ e → ∣ fromPoint e ∣₁

PointedHeap : ∀ ℓ → Type (ℓ-suc ℓ)
PointedHeap ℓ = Σ[ H ∈ Heap ℓ ] ⟨ H ⟩

PointedHeap≡ : {(H , e) (H' , e') : PointedHeap ℓ} (eqv : HeapEquiv H H') (p : eqv .fst .fst e ≡ e')
→ (H , e) ≡ (H' , e')
PointedHeap≡ eqv p = cong₂ _,_ (uaHeap eqv) (ua-gluePath _ p)

GroupsArePointedHeaps : Group ℓ ≃ PointedHeap ℓ
GroupsArePointedHeaps {ℓ} = isoToEquiv asIso module GroupsArePointedHeaps where
open Iso

asIso : Iso (Group ℓ) (PointedHeap ℓ)
asIso .fun G = GroupHeap G , G .snd .GroupStr.1g
asIso .inv (H , e) = StructureGroup.fromPoint H e
asIso .rightInv (H , e) = PointedHeap≡ (GroupHeapOfStructureGroup.fromPoint H e) refl
asIso .leftInv G = uaGroup (StructureGroupOfGroupHeap G)