When connecting agents in an application, the output of one agent needs to be compatible with the input of the following agent. This compatibility needs to be guaranteed at three different levels:
- transport level: the two agents need to use the same transport protocol.
- format level: the two agents need to carry information using the same format (e.g. same JSON data structures)
- semantic level: the two agents need to “talk about the same thing”.
Communication between agents is not possible if there are discrepancies between the agents at any of the layers [1-3].
Ensuring that agents are semantically compatible, i.e., the output of the one agent contains the information needed by later agents, is an problem of composition or planning in the application. This project, the IO Mapper Agent, addresses level 2 and 3 compatibility. It is a component, implemented as an agent, that can make use of an LLM to transform the output of one agent to become compatible to the input of another agent. Note that this may mean many different things, for example:
- JSON structure transcoding: A JSON dictionary needs to be remapped into another JSON dictionary
- Text summarisation: A text needs to be summarised or some information needs to be removed
- Text translation: A text needs to be translated from one language to another
- Text manipulation: Part of the information of one text needs to be reformulated into another text
- Any combination of the above
The IO mapper Agent can be fed the schema definitions of inputs and outputs as defined by the Agent Connect Protocol.
To get a local copy up and running, follow the steps below.
-
Clone the repository
git clone https://github.com/agntcy/iomapper-agnt.git
There are several different ways to leverage the IO Mapper functions in Python. There is an agentic interface using models that can be invoked on different AI platforms and an imperative interface that does deterministic JSON remapping without using any AI models.
The IO Mapper Agent uses an LLM to transform the inputs (typically the output of an agent) to match the desired output (typically the input of another agent). As such, it additionally supports specifying the model prompts for the translation. The configuration object provides a specification for the system and default user prompts:
This project supports specifying model interactions using LangGraph.
Note: For each example, the detailed process of creating agents and configuring the respective multi-agent software is omitted. Instead, only the essential steps for configuring and integrating the IO Mapper Agent are presented.
We support usages with both LangGraph state defined with TypedDict or as a Pydantic object
Field | Description | Required | Example |
---|---|---|---|
input_fields | An array of json paths and or instances of FieldMetadata. | ✅ |
|
output_fields | An array of json paths and or instances of FieldMetadata. | ✅ |
|
input_schema | Defines the schema of the input data. | ➖ |
{
"type": "object",
"properties": {
"title": {"type": "string"},
"ingredients": {"type": "array", "items": {"type": "string"}},
"instructions": {"type": "string"},
},
"required": ["title", "ingredients, instructions"],
} OR from pydantic import TypeAdapter
TypeAdapter(GraphState).json_schema() |
output_schema | Defines the schema for the output data. | ➖ | same as input_schema |
Field | Description | Required | Example |
---|---|---|---|
metadata | Instance of IOMappingAgentMetadata. | ✅ |
IOMappingAgentMetadata(
input_fields=["documents.0.page_content"],
output_fields=["recipe"],
input_schema=TypeAdapter(GraphState).json_schema(),
output_schema={
"type": "object",
"properties": {
"title": {"type": "string"},
"ingredients": {"type": "array", "items": {"type": "string"}},
"instructions": {"type": "string"},
},
"required": ["title", "ingredients, instructions"],
},
) |
llm | An instance of the large language model to be used. | ✅ |
AzureChatOpenAI(
model=model_version,
api_version=api_version,
seed=42,
temperature=0,
) |
This example involves a multi-agent software system designed to process a create engagement campaign and share within an organization. It interacts with an agent specialized in creating campaigns, another agent specialized in identifying suitable users. The information is then relayed to an IO mapper, which converts the list of users and the campaign details to present statistics about the campaign.
metadata = IOMappingAgentMetadata(
input_fields=["selected_users", "campaign_details.name"],
output_fields=["stats.status"],
)
The above instruction directs the IO mapper agent to utilize the selected_users
and name
from the campaign_details
field and map them to the stats.status
. No further information is needed since the type information can be derived from the input data which is a pydantic model.
ℹ️ Both input_fields and output_fields can also be sourced with a list composed of str and/or instances of FieldMetadata as the bellow example shows:
metadata = IOMappingAgentMetadata(
input_fields=[
FieldMetadata(
json_path="selected_users", description="A list of users to be targeted"
),
FieldMetadata(
json_path="campaign_details.name",
description="The name that can be used by the campaign",
examples=["Campaign A"]
),
],
output_fields=["stats"],
)
mapping_agent = IOMappingAgent(metadata=metadata, llm=llm)
workflow.add_node(
"io_mapping",
mapping_agent.langgraph_node,
)
With the edge added, you can run the your LangGraph graph.
workflow.add_edge("create_communication", "io_mapping")
workflow.add_edge("io_mapping", "send_communication")
A flow chart of Io Mapper in a LangGraph graph of the discussed multi agent software discussed above
flowchart TD
A[create_communication] -->|input in specific format| B(IO Mapper Agent)
B -->|output expected format| D[send_communication]
This example involves a multi-agent software system designed to process a list of ingredients. It interacts with an agent specialized in recipe books to identify feasible recipes based on the provided ingredients. The information is then relayed to an IO mapper, which converts it into a format suitable for display to the user.
metadata = IOMappingAgentMetadata(
input_fields=["documents.0.page_content"],
output_fields=["recipe"],
input_schema=TypeAdapter(GraphState).json_schema(),
output_schema={
"type": "object",
"properties": {
"title": {"type": "string"},
"ingredients": {"type": "array", "items": {"type": "string"}},
"instructions": {"type": "string"},
},
"required": ["title", "ingredients, instructions"],
},
)
mapping_agent = IOMappingAgent(metadata=metadata, llm=llm)
graph.add_node(
"recipe_io_mapper",
mapping_agent.langgraph_node,
)
With the edge added, you can run the your LangGraph graph.
graph.add_edge("recipe_expert", "recipe_io_mapper")
We support both LlamaIndex Workflow and the new AgentWorkflow multi agent software
IOMappingInputEvent
Property | Description | Required | Value Example |
metadata | Object used to describe the input fields, output fields schema and any relevant information to be used in the mapping | ✅ |
IOMappingAgentMetadata(
input_fields=["selected_users", "campaign_details.name"],
output_fields=["stats"],
) |
config | Object containing information such as the llm instance that will be used to perform the translation | ✅ |
LLamaIndexIOMapperConfig(llm=llm) |
data | Represents the input data to be used in the translation | ✅ |
OverallState(campaign_details=campaign_details, selected_users=ev.list_users), |
IOMappingOutputEvent
Property | Description | Required | Value Example |
mapping_result | A dictionary containing the result of the mapping | ✅ | N/A |
In this example we recreate the campaign workflow using LlamaIndex workflow
from agntcy_iomapper import IOMappingAgent, IOMappingAgentMetadata
class CampaignWorkflow(Workflow):
@step
async def prompt_step(self, ctx: Context, ev: StartEvent) -> PickUsersEvent:
await ctx.set("llm", ev.get("llm"))
return PickUsersEvent(prompt=ev.get("prompt"))
@step
async def pick_users_step(
self, ctx: Context, ev: PickUsersEvent
) -> CreateCampaignEvent:
return CreateCampaignEvent(list_users=users)
# The step that will trigger IO mapping
@step
async def create_campaign(
self, ctx: Context, ev: CreateCampaignEvent
) -> IOMappingInputEvent:
prompt = f"""
You are a campaign builder for company XYZ. Given a list of selected users and a user prompt, create an engaging campaign.
Return the campaign details as a JSON object with the following structure:
{{
"name": "Campaign Name",
"content": "Campaign Content",
"is_urgent": yes/no
}}
Selected Users: {ev.list_users}
User Prompt: Create a campaign for all users
"""
parser = PydanticOutputParser(output_cls=Campaign)
llm = await ctx.get("llm", default=None)
llm_response = llm.complete(prompt)
try:
campaign_details = parser.parse(str(llm_response))
metadata = IOMappingAgentMetadata(
input_fields=["selected_users", "campaign_details.name"],
output_fields=["stats"],
)
config = LLamaIndexIOMapperConfig(llm=llm)
io_mapping_input_event = IOMappingInputEvent(
metadata=metadata,
config=config,
data=OverallState(
campaign_details=campaign_details,
selected_users=ev.list_users,
),
)
return io_mapping_input_event
except Exception as e:
print(f"Error parsing campaign details: {e}")
return StopEvent(result=f"{e}")
@step
async def after_translation(self, evt: IOMappingOutputEvent) -> StopEvent:
return StopEvent(result="Done")
It is important to notice: The step create_campaign will trigger the IO mapper. Why? Well, because:
- It declares that it returns an instance of IOMappingInputEvent
async def create_campaign(self, ctx: Context, ev: CreateCampaignEvent) -> IOMappingInputEvent:
- And finally it creates and returns a valid instance of the IOMappingInputEvent
# define an instance metadata
metadata = IOMappingAgentMetadata(
input_fields=["selected_users", "campaign_details.name"],
output_fields=["stats"]
)
#define an instance of config with must have an llm instance
config = LLamaIndexIOMapperConfig(llm=llm)
# Finally return define and return the IOMappingInputEvent
io_mapping_input_event = IOMappingInputEvent(
metadata=metadata,
config=config,
data=OverallState(
campaign_details=campaign_details,
selected_users=ev.list_users,
),
)
return io_mapping_input_event
w = CampaignWorkflow()
IOMappingAgent.as_worfklow_step(workflow=w)
In this example we recreate the recipe workflow using LlamaIndex workflow
from agntcy_iomapper import FieldMetadata, IOMappingAgent, IOMappingAgentMetadata
mapping_metadata = IOMappingAgentMetadata(
input_fields=["documents.0.text"],
output_fields=[
FieldMetadata(
json_path="recipe",
description="this is a recipe for the ingredients you've provided",
)
],
input_schema=TypeAdapter(GraphState).json_schema(),
output_schema={
"type": "object",
"properties": {
"title": {"type": "string"},
"ingredients": {"type": "array", "items": {"type": "string"}},
"instructions": {"type": "string"},
},
"required": ["title", "ingredients, instructions"],
},
)
Important to note that a tool is passed, to instruct the io mapper where to go next in the flow.
io_mapping_agent = IOMappingAgent.as_workflow_agent(
mapping_metadata=mapping_metadata,
llm=llm,
name="IOMapperAgent",
description="Useful for mapping a recipe document into recipe object",
can_handoff_to=["Formatter_Agent"],
tools=[got_to_format],
)
io_mapping_agent = IOMappingAgent.as_workflow_agent(
mapping_metadata=mapping_metadata,
llm=llm,
name="IOMapperAgent",
description="Useful for mapping a recipe document into recipe object",
can_handoff_to=["Formatter_Agent"],
tools=[got_to_format],
)
make make run_lg_eg_py
Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated. For detailed contributing guidelines, please see CONTRIBUTING.md
Copyright (c) 2025 Cisco and/or its affiliates.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.