Official Pytorch Implementation of Paper - Cortex-Grounded Diffusion Models for Brain Image Generation
- Create environment:
conda env create -n c2v --file c2v_env.yml - Activate environment:
conda activate c2v
For dataset the path should be formatted as:
dataset_path/{format}Tr # training data
dataset_path/{format}Val # validation data
dataset_path/{format}Ts # test datafor different formats of input.
After that, the dataset configuration should be specified in config file as:
dataset_name: 'dataset_name'
dataset_config:
img_folder: 'dataset_path/mri'
shape_folder: 'dataset_path/shape'
condition_folder: 'dataset_path/other_condition'
After specifying the config file in configs/c2v.yaml, simply start training/evaluation by:
sh train_c2v.sh
for training, and
sh test_c2v.sh
for evaluation.
Our code is implemented based on the BBDM, thanks!
If you find this repository useful, please consider giving a star 🌟 and citing the paper:
@inproceedings{bongratz20253d,
title={3D Shape-to-Image Brownian Bridge Diffusion for Brain MRI Synthesis from Cortical Surfaces},
author={Bongratz, Fabian and Li, Yitong and Elbaroudy, Sama and Wachinger, Christian},
booktitle={International Conference on Information Processing in Medical Imaging},
pages={187--202},
year={2025},
organization={Springer}
}
