Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 67 additions & 0 deletions src/beyondllm/llms/cerebras.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
from typing import Any, Dict
from dataclasses import dataclass, field
import os

@dataclass
class CerebrasModel:
"""
Class representing a Language Model (LLM) model using Cerebras AI.
Example:
```
>>> from beyondllm.llms import CerebrasModel
>>> llm = CerebrasModel(model_name="llama3.1-8b", model_kwargs={"temperature":0.2, "max_completion_tokens":1024})
```
or
```
>>> import os
>>> os.environ['CEREBRAS_API_KEY'] = "***********"
>>> from beyondllm.llms import CerebrasModel
>>> llm = CerebrasModel()
```
"""
api_key: str = ""
model_name: str = "llama3.1-8b"
model_kwargs: dict = field(default_factory=lambda: {
"stream": False,
"temperature": 0.2,
"top_p": 1,
"max_completion_tokens": 2048
})

def __post_init__(self):
if not self.api_key:
self.api_key = os.getenv("CEREBRAS_API_KEY")
if not self.api_key:
raise ValueError("CEREBRAS_API_KEY is not provided and not found in environment variables.")
self.load_llm()

def load_llm(self):
try:
from cerebras.cloud.sdk import Cerebras
except ImportError:
raise ImportError("Cerebras library is not installed. Please install it with `pip install cerebras-cloud-sdk`.")

try:
self.client = Cerebras(api_key=self.api_key)
except Exception as e:
raise Exception(f"Failed to initialize Cerebras client: {str(e)}")

def predict(self, prompt: Any) -> str:
try:
response = self.client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": str(prompt)},
],
model=self.model_name,
**self.model_kwargs
)
return response.choices[0].message.content
except Exception as e:
raise Exception(f"Failed to generate prediction: {str(e)}")

@staticmethod
def load_from_kwargs(self, kwargs: Dict):
model_config = ModelConfig(**kwargs)
self.config = model_config
self.load_llm()