asv
output file comparer, for comparing across different environments or runs.
For other functionality, refer to the asv
package or consider writing an
extension.
This is agnostic to the environment, however the benchmarks.json
is required.
The practical usage of this command is to compare asv
runs from builds which
are not handled by the asv
environment management machinery.
➜ asv-spyglass compare tests/data/d6b286b8-virtualenv-py3.12-numpy.json tests/data/d6b286b8-rattler-py3.12-numpy.json tests/data/d6b286b8_asv_samples_benchmarks.json
| Change | Before | After | Ratio | Benchmark (Parameter) |
|----------|-------------|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|
| - | 157±3ns | 137±3ns | 0.87 | benchmarks.TimeSuiteDecoratorSingle.time_keys(10) [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| - | 643±2ns | 543±2ns | 0.84 | benchmarks.TimeSuiteDecoratorSingle.time_keys(100) [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| | 1.17±0μs | 1.07±0μs | 0.91 | benchmarks.TimeSuiteDecoratorSingle.time_keys(200) [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| + | 167±3ns | 187±3ns | 1.12 | benchmarks.TimeSuiteDecoratorSingle.time_values(10) [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| + | 685±4ns | 785±4ns | 1.15 | benchmarks.TimeSuiteDecoratorSingle.time_values(100) [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| + | 1.26±0μs | 1.46±0μs | 1.16 | benchmarks.TimeSuiteDecoratorSingle.time_values(200) [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| + | 1.17±0.01μs | 1.37±0.01μs | 1.17 | benchmarks.TimeSuiteMultiDecorator.time_ranges(10, 'arange') [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| | 211±0.9ns | 231±0.9ns | 1.09 | benchmarks.TimeSuiteMultiDecorator.time_ranges(10, 'range') [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| + | 3.43±0.02μs | 3.83±0.02μs | 1.12 | benchmarks.TimeSuiteMultiDecorator.time_ranges(100, 'arange') [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| + | 551±1ns | 651±1ns | 1.18 | benchmarks.TimeSuiteMultiDecorator.time_ranges(100, 'range') [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| | 1.14±0μs | 1.04±0μs | 0.91 | benchmarks.time_ranges_multi(10, 'arange') [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| - | 196±1ns | 176±1ns | 0.9 | benchmarks.time_ranges_multi(10, 'range') [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| | 3.39±0.03μs | 3.09±0.03μs | 0.91 | benchmarks.time_ranges_multi(100, 'arange') [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| - | 532±1ns | 432±1ns | 0.81 | benchmarks.time_ranges_multi(100, 'range') [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| | 1.18±0μs | 1.08±0μs | 0.91 | benchmarks.time_sort(10) [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
| - | 1.83±0.01μs | 1.63±0.01μs | 0.89 | benchmarks.time_sort(100) [rgx1gen11/virtualenv-py3.12-numpy -> rgx1gen11/rattler-py3.12-numpy] |
Can be useful for exporting to other dashboards, or internally for further inspection.
➜ asv-spyglass to-df tests/data/d6b286b8-rattler-py3.12-numpy.json tests/data/d6b286b8_asv_samples_benchmarks.json
shape: (16, 17)
| benchmark_base | name | result | units | machine | env | version | ci_99_a | ci_99_b | q_25 | q_75 | number | repeat | samples | param_size | param_n | param_func_name |
|--------------------------------|--------------------------------|-----------|---------|-----------|----------------------|-------------------------------|-----------|-----------|-----------|-----------|--------|--------|---------|------------|---------|-----------------|
| benchmarks.TimeSuiteDecoratorS | benchmarks.TimeSuiteDecoratorS | 1.3738e-7 | seconds | rgx1gen11 | rattler-py3.12-numpy | 64746c9051ff76aa879b428c27b42 | 1.3444e-7 | 1.4947e-7 | 1.3621e-7 | 1.4310e-7 | 67364 | 10 | null | 10 | null | null |
| ingle.time_keys | ingle.time_keys(10) | | | | | 47e8ed976c44a40579ae9... | | | | | | | | | | |
| benchmarks.TimeSuiteDecoratorS | benchmarks.TimeSuiteDecoratorS | 5.4292e-7 | seconds | rgx1gen11 | rattler-py3.12-numpy | 64746c9051ff76aa879b428c27b42 | 5.3813e-7 | 5.4586e-7 | 5.4190e-7 | 5.4495e-7 | 16815 | 10 | null | 100 | null | null |
| ingle.time_keys | ingle.time_keys(100) | | | | | 47e8ed976c44a40579ae9... | | | | | | | | | | |
| benchmarks.TimeSuiteDecoratorS | benchmarks.TimeSuiteDecoratorS | 0.000001 | seconds | rgx1gen11 | rattler-py3.12-numpy | 64746c9051ff76aa879b428c27b42 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | 8960 | 10 | null | 200 | null | null |
| ingle.time_keys | ingle.time_keys(200) | | | | | 47e8ed976c44a40579ae9... | | | | | | | | | | |
| benchmarks.TimeSuiteDecoratorS | benchmarks.TimeSuiteDecoratorS | 1.8705e-7 | seconds | rgx1gen11 | rattler-py3.12-numpy | ab162b6142a1390a0e2a667ed8d2d | 1.8023e-7 | 1.9282e-7 | 1.8595e-7 | 1.9121e-7 | 63961 | 10 | null | 10 | null | null |
| ingle.time_values | ingle.time_values(10... | | | | | 3285f77152d9caa559b4f... | | | | | | | | | | |
| benchmarks.TimeSuiteDecoratorS | benchmarks.TimeSuiteDecoratorS | 7.8471e-7 | seconds | rgx1gen11 | rattler-py3.12-numpy | ab162b6142a1390a0e2a667ed8d2d | 7.7445e-7 | 7.9307e-7 | 7.8003e-7 | 7.8758e-7 | 15516 | 10 | null | 100 | null | null |
| ingle.time_values | ingle.time_values(10... | | | | | 3285f77152d9caa559b4f... | | | | | | | | | | |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| benchmarks.time_ranges_multi | benchmarks.time_ranges_multi(1 | 0.000001 | seconds | rgx1gen11 | rattler-py3.12-numpy | f9ae8b134446c273c0d3eb1e90246 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | 9631 | 10 | null | null | 10 | 'arange' |
| | 0, 'arange') | | | | | ae0d6f99389d06119dfe4... | | | | | | | | | | |
| benchmarks.time_ranges_multi | benchmarks.time_ranges_multi(1 | 4.3222e-7 | seconds | rgx1gen11 | rattler-py3.12-numpy | f9ae8b134446c273c0d3eb1e90246 | 4.3157e-7 | 4.3557e-7 | 4.3176e-7 | 4.3420e-7 | 20588 | 10 | null | null | 100 | 'range' |
| | 00, 'range') | | | | | ae0d6f99389d06119dfe4... | | | | | | | | | | |
| benchmarks.time_ranges_multi | benchmarks.time_ranges_multi(1 | 0.000003 | seconds | rgx1gen11 | rattler-py3.12-numpy | f9ae8b134446c273c0d3eb1e90246 | 0.000003 | 0.000003 | 0.000003 | 0.000003 | 3042 | 10 | null | null | 100 | 'arange' |
| | 00, 'arange') | | | | | ae0d6f99389d06119dfe4... | | | | | | | | | | |
| benchmarks.time_sort | benchmarks.time_sort(10) | 0.000001 | seconds | rgx1gen11 | rattler-py3.12-numpy | 60785bf757da0254d857b696482db | 0.000001 | 0.000001 | 0.000001 | 0.000001 | 9345 | 10 | null | null | 10 | null |
| | | | | | | 7a25509a5b28a2c9d2a54... | | | | | | | | | | |
| benchmarks.time_sort | benchmarks.time_sort(100) | 0.000002 | seconds | rgx1gen11 | rattler-py3.12-numpy | 60785bf757da0254d857b696482db | 0.000002 | 0.000002 | 0.000002 | 0.000002 | 5828 | 10 | null | null | 100 | null |
| | | | | | | 7a25509a5b28a2c9d2a54... | | | | | | | | | | |
Consider the following situation:
pixi shell & pdm install -G:all # To start with the right setup for asv_spyglass
# Somewhere else..
gh repo clone airspeed-velocity/asv_samples
cd asv_samples
git checkout decorator-params
# Generate the config
python scripts/gen_asv_conf.py asv.conf.base.json
Now assuming there are two environments which are present, and both have the
project to be tested installed. For this we will use micromamba
.
micromamba create -p $(pwd)/.tmp_1 -c conda-forge "python==3.8" pip asv numpy
$(pwd)/.tmp_1/bin/pip install .
micromamba create -p $(pwd)/.tmp_2 -c conda-forge "python==3.12" pip asv numpy
$(pwd)/.tmp_2/bin/pip install .
Activating the environment is not necessary in this instance, but for more
complex workflows where the installation can be more convoluted, feel free to
work within the environment. Now we can run asv
.
➜ asv run -E existing:$(pwd)/.tmp_2/bin/python --record-samples --bench 'multi' --set-commit-hash "HEAD"
· Discovering benchmarks
· Running 1 total benchmarks (1 commits * 1 environments * 1 benchmarks)
[ 0.00%] · For asv_samples commit d6b286b8 <decorator-params>:
[ 0.00%] ·· Building for existing-py_home_rgoswami_Git_Github_Quansight_asvWork_asv_samples_.tmp_2_bin_python
[ 0.00%] ·· Benchmarking existing-py_home_rgoswami_Git_Github_Quansight_asvWork_asv_samples_.tmp_2_bin_python
[50.00%] ··· Running (benchmarks.time_ranges_multi--).
[100.00%] ··· benchmarks.time_ranges_multi ok
[100.00%] ··· ===== =========== =============
-- func_name
----- -------------------------
n range arange
===== =========== =============
10 197±1ns 1.12±0μs
100 535±0.8ns 3.30±0.03μs
===== =========== =============
➜ asv run -E existing:$(pwd)/.tmp_1/bin/python --record-samples --bench 'multi' --set-commit-hash "HEAD"
· Discovering benchmarks
· Running 1 total benchmarks (1 commits * 1 environments * 1 benchmarks)
[ 0.00%] · For asv_samples commit d6b286b8 <decorator-params>:
[ 0.00%] ·· Building for existing-py_home_rgoswami_Git_Github_Quansight_asvWork_asv_samples_.tmp_1_bin_python
[ 0.00%] ·· Benchmarking existing-py_home_rgoswami_Git_Github_Quansight_asvWork_asv_samples_.tmp_1_bin_python
[50.00%] ··· Running (benchmarks.time_ranges_multi--).
[100.00%] ··· benchmarks.time_ranges_multi ok
[100.00%] ··· ===== ========= =============
-- func_name
----- -----------------------
n range arange
===== ========= =============
10 324±2ns 1.09±0μs
100 729±4ns 3.25±0.03μs
===== ========= =============
Bear in mind that --dry-run
or -n
or --python=same
will skip writing the
results file, and therefore are not going to be relevant here.
With the results files in place, it is now trivial to compare the results across environments.
asv-spyglass compare .asv/results/rgx1gen11/*.tmp_1* .asv/results/rgx1gen11/*.tmp_2* .asv/results/benchmarks.json
| Change | Before | After | Ratio | Benchmark (Parameter) |
|----------|-------------|-------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| | 1.09±0μs | 1.12±0μs | 1.03 | benchmarks.time_ranges_multi(10, 'arange') [rgx1gen11/existing-py_home_asv_samples_.tmp_1_bin_python -> rgx1gen11/existing-py_home_asv_samples_.tmp_2_bin_python] |
| - | 324±2ns | 197±1ns | 0.61 | benchmarks.time_ranges_multi(10, 'range') [rgx1gen11/existing-py_home_asv_samples_.tmp_1_bin_python -> rgx1gen11/existing-py_home_asv_samples_.tmp_2_bin_python] |
| | 3.25±0.03μs | 3.30±0.03μs | 1.02 | benchmarks.time_ranges_multi(100, 'arange') [rgx1gen11/existing-py_home_asv_samples_.tmp_1_bin_python -> rgx1gen11/existing-py_home_asv_samples_.tmp_2_bin_python] |
| - | 729±4ns | 535±0.8ns | 0.73 | benchmarks.time_ranges_multi(100, 'range') [rgx1gen11/existing-py_home_asv_samples_.tmp_1_bin_python -> rgx1gen11/existing-py_home_asv_samples_.tmp_2_bin_python] |
All contributions are welcome, this includes code and documentation contributions but also questions or other clarifications. Note that we expect all contributors to follow our Code of Conduct.
Since the output of these are mostly text oriented, and the inputs are json
,
these are handled via a mixture of reading known data and using golden master
testing aka approval testing. Thus pytest
with pytest-datadir
and
ApprovalTests.Python
is used.
A pre-commit
job is setup on CI to enforce consistent styles, so it is best to
set it up locally as well (using pipx for isolation):
# Run before commiting
pipx run pre-commit run --all-files
# Or install the git hook to enforce this
pipx run pre-commit install
Why another CLI instead of being in
asv
?
I didn't want to handle the argparse
oriented CLI in asv
. That being said
this will be under the airspeed-velocity
organization..