Skip to content

πŸš— Number Plate Detection System using YOLOv5 and PaddleOCR | Python Backend & React Frontend

License

Notifications You must be signed in to change notification settings

alok-ahirrao/Number-Plate-Detection-System

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

7 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Number Plate Detection System πŸš—πŸ”

Automatic detection and recognition of vehicle number plates using advanced machine learning techniques.


🎯 Demo Outputs

GIF Demo

Demo GIF

Image Result

Detected Plate


πŸ“Œ Project Overview

This is a full-stack application for automatic number plate detection and recognition. It leverages YOLOv5 for detecting number plates and PaddleOCR for recognizing characters from detected plates. Built with a Python-based backend and a React frontend for a user-friendly experience.


πŸ“‚ Project Structure

project-root/
β”œβ”€β”€ backend/
β”‚   β”œβ”€β”€ model/
β”‚   β”‚   └── best.pt
β”‚   β”œβ”€β”€ main.py
β”‚   └── requirements.txt
└── frontend/
    β”œβ”€β”€ node_modules/
    β”œβ”€β”€ src/
    β”‚   β”œβ”€β”€ components/
    β”‚   β”œβ”€β”€ Dashboard.tsx
    β”‚   β”œβ”€β”€ DetectionPanel.tsx
    β”‚   β”œβ”€β”€ HistoryPanel.tsx
    β”‚   β”œβ”€β”€ NotificationsPanel.tsx
    β”‚   β”œβ”€β”€ NumberPlateDetection.tsx
    β”‚   └── StatsPanel.tsx
    β”œβ”€β”€ styles/
    β”œβ”€β”€ App.tsx
    β”œβ”€β”€ index.css
    β”œβ”€β”€ main.tsx
    └── vite-env.d.ts

πŸš€ Quick Start

πŸ“₯ Model Weights Download

You can download the pre-trained YOLOv5 model weights from the following link:

➑️ Download Model Weights

Place the downloaded weights (best.pt) into the backend/model/ directory.

Clone Repository

git clone https://github.com/alok-ahirrao/Number-Plate-Detection-System.git

Backend Setup

Navigate to the backend directory, install dependencies, and start the server:

cd backend
pip install -r requirements.txt
python main.py

Backend API runs at: http://localhost:8000

Frontend Setup

Navigate to the frontend directory, install dependencies, and start the development server:

cd frontend
npm install
npm run dev

Frontend app runs at: http://localhost:5173

Technologies Used

  • FastAPI
  • PyTorch
  • YOLOv5
  • PaddleOCR
  • OpenCV
  • React
  • Vite

🀝 Contribution

Feel free to improve this project by submitting pull requests. Your contributions are welcome!


πŸ“œ License

Copyright Β© 2025, Alok Ahirrao

Licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. You may use or modify this project for personal or educational purposes only. Commercial usage requires explicit permission.

For inquiries, please contact [email protected].


🌟 Happy Coding! 🌟