This is a PyTorch implementation of our Deep Learning on Computational Accelerators course project detailed in Report.pdf
by:
| Name | |
|---|---|
| Amit Rotner | [email protected] |
| Shaked Doron | [email protected] |
- Clone this repository.
- Install and activate the environment using the following commands:
conda env create -f environment.yml
conda activate final_project
.
├── cs236781/ # Helper files
│ ├── plot.py # Helper function to plot experiments results
│ └── unit.py # Helper classes to represent the result of fitting a model
├── data/ # Dataset directory
├── ptb.py # The implementation of the CNN network for the PTB dataset
├── mit_bih.py # The implementation of the CNN network for the MIT-BIH dataset
├── autoencoder.py # The implementation of the Autoencoder network
├── clustering.py # The implementation of the clustering layer, kmeans, target distribution, and clustering predictions calculation
├── utils.py # Helper class implementing metrics for clustering evaluation
├── training.py # The implementation of the model training and testing functions
├── PTB classification with CNN.ipynb # A Jupyter notebook to perform and display PTB classification using the CNN network
├── MIT-BIH classification with CNN.ipynb # A Jupyter notebook to perform and display MIT-BIH classification using the CNN network
├── DCEC ptb.ipynb # A Jupyter notebook to perform and display PTB classification using the DCEC network
├── DCEC mit-bih.ipynb # A Jupyter notebook to perform and display MIT-BIH classification using the DCEC network
├── Experiments.ipynb # A Jupyter notebook to perform DCEC experiments varying on d
├── Report.pdf # Project report
├── environment.yml
├── LICENSE
└── README.md
- Download datasets from: https://drive.google.com/drive/folders/1fefvwQfyTafnq0rybXCWT9wmSElzP58A?usp=sharing and place it in ./data/ folder.
- Run the relevant Jupyter notebook.