Skip to content

andreaswurtz/MLSimp

 
 

Repository files navigation

HALLO husk lige

  • TrajData/Geolife_TVT/train.pkl
  • Val/Geolife/rtree_simp.dat
  • Val/Geolife/rtree_test_persisted.dat
  • MLSimp/Grid&Graph/Geolife/gridmap_100_100_50_20000.pickle

disse tre filer skal downloades manuelt fra mlsimp repoet da de er for store

MLSimp

This is the implementation code for "Quantifying Point Contributions: A Lightweight Framework for Efficient and Effective Query-Driven Trajectory Simplification".

Environment Requirements

  • Python >= 3.10
  • Recommended: Latest versions of PyTorch and PyTorch Geometric
  • Other dependencies: tqdm, path, rtree

Dataset

  • Download the GeoLife dataset from here and extract it to the ./TrajData folder.
  • Preprocess the database using python Utils.preprocessing_trajs.py.
  • Generate training and testing sets using python Utils.dataset.py.

T-BERT Pretraining

  • Run BertPretrain.py to perform pretraining.
  • Every 100 epochs, the model will be saved in the ./ModelSave/{dataset}/pretrain folder.

MLSimp Training

  • Run MLTrain.py to train GNN-TS and Diff-TS.
  • Trained models will be saved in ./ModelSave/{dataset}/.

Testing

  • Run validation.py for testing.
  • The compressed results will be saved in ./SimpTraj.
  • Query-related files will be saved in ./Val.

Acknowledgements

About

A latest version of MLSIMP code

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.6%
  • Julia 10.4%