This project analyzes Uber trip data using Flask API and Docker containerization.
.
├── Dockerfile
├── requirements.txt
├── app.py
└── README.md
wget https://github.com/fivethirtyeight/uber-tlc-foil-response/raw/master/uber-trip-data/uber-raw-data-janjune-15.csv.zip
unzip uber-raw-data-janjune-15.csv.zip
mv uber-raw-data-janjune-15.csv Uber-Jan-Feb-FOIL.csv
head -50000 Uber-Jan-Feb-FOIL.csv > Uber-small.csvcurl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo systemctl start dockersudo docker build -t uber-app .sudo docker run -p 5000:5000 uber-app# Test homepage
curl http://localhost:5000/
# Test traffic prediction
curl "http://localhost:5000/predict_traffic?timestamp=2015-01-01%2000:00:00"GET /- HomepageGET /predict_traffic?timestamp=YYYY-MM-DD HH:MM:SS- Predict traffic for a given timestamp
- Data preprocessing and cleaning
- Traffic pattern analysis
- Flask REST API
- Docker containerization
- Load testing with JMeter
- Python 3.8
- Flask
- Pandas
- Docker
- JMeter