|
2 | 2 | "dataset_name": "satellite_ghrsst_l3c_4hour_himawari8", |
3 | 3 | "logger_name": "satellite_ghrsst_l3c_4hour_himawari8", |
4 | 4 | "parent_config": "satellite_ghrsst_main.json", |
5 | | - "metadata_uuid": "06d2fff4-8e2c-4bd7-b98f-cd98e588df6f", |
6 | | - "schema": { |
7 | | - "time": { |
8 | | - "type": "timestamp[ns]", |
9 | | - "long_name": "reference time of sst file", |
10 | | - "standard_name": "time", |
11 | | - "axis": "T", |
12 | | - "comment": "A typical reference time for the data" |
13 | | - }, |
14 | | - "lat": { |
15 | | - "type": "float", |
16 | | - "long_name": "latitude", |
17 | | - "standard_name": "latitude", |
18 | | - "axis": "Y", |
19 | | - "comment": "Latitudes for locating data", |
20 | | - "valid_min": -90.0, |
21 | | - "valid_max": 90.0, |
22 | | - "units": "degrees_north" |
23 | | - }, |
24 | | - "lon": { |
25 | | - "type": "float", |
26 | | - "long_name": "longitude", |
27 | | - "standard_name": "longitude", |
28 | | - "axis": "X", |
29 | | - "comment": "Longitudes for locating data", |
30 | | - "valid_min": -180.0, |
31 | | - "valid_max": 360.0, |
32 | | - "units": "degrees_east" |
33 | | - }, |
34 | | - "sea_surface_temperature": { |
35 | | - "type": "double", |
36 | | - "valid_min": -32765, |
37 | | - "valid_max": 32765, |
38 | | - "units": "kelvin", |
39 | | - "long_name": "sea surface skin temperature", |
40 | | - "standard_name": "sea_surface_skin_temperature", |
41 | | - "comment": "The skin temperature of the ocean at a depth of approximately 10 microns. SSTs are retrieved by using the Radiative Transfer Model (RTTOV12.3) and Bayesian cloud clearing method based on the ESA CCI SST code developed at the University of Reading", |
42 | | - "calendar": "Standard", |
43 | | - "grid_mapping": "crs" |
44 | | - }, |
45 | | - "sses_bias": { |
46 | | - "type": "double", |
47 | | - "valid_min": -127, |
48 | | - "valid_max": 127, |
49 | | - "clip_min": -0.7055229215770699, |
50 | | - "clip_max": 0.7937132867742037, |
51 | | - "units": "kelvin", |
52 | | - "long_name": "SSES bias estimate", |
53 | | - "comment": "Bias estimate derived from L2P bias,following the method described in http://imos.org.au/fileadmin/user_upload/shared/SRS/SST/GHRSST-DOC-basic-v1.0r1.pdf. Subtracting sses_bias from sea_surface_temperature produces a more accurate skin SST estimate", |
54 | | - "grid_mapping": "crs" |
55 | | - }, |
56 | | - "sses_standard_deviation": { |
57 | | - "type": "double", |
58 | | - "valid_min": -127, |
59 | | - "valid_max": 127, |
60 | | - "clip_min": 0.5, |
61 | | - "clip_max": 1.5874823745387598, |
62 | | - "units": "kelvin", |
63 | | - "long_name": "SSES standard deviation estimate", |
64 | | - "comment": "Standard deviation estimate derived from L2P standard deviation, following the method described in http://imos.org.au/fileadmin/user_upload/shared/SRS/SST/GHRSST-DOC-basic-v1.0r1.pdf.", |
65 | | - "grid_mapping": "crs" |
66 | | - }, |
67 | | - "quality_level": { |
68 | | - "type": "float", |
69 | | - "valid_min": -127, |
70 | | - "valid_max": 127, |
71 | | - "long_name": "quality level of SST pixel", |
72 | | - "comment": "These are the overall quality indicators and are used for all GHRSST SSTs. Refer Merchant et al., 2019 (https://doi.org/10.1038/s41597-019-0236-x) for more details for logic and threshold for assigning pixel quality level with use of Bayesian cloud clearing method. For validation applications, please consider quality_level greater than or equal 4 with bias correction. For operational applications, please consider quality_level greater than or equal 4 with bias correction. For qualitative applications, please consider quality_level greater than or equal 3 with or without bias correction.", |
73 | | - "flag_meanings": "no_data bad_data worst_quality low_quality acceptable_quality best_quality", |
74 | | - "grid_mapping": "crs", |
75 | | - "flag_values": [ |
76 | | - 0, |
77 | | - 1, |
78 | | - 2, |
79 | | - 3, |
80 | | - 4, |
81 | | - 5 |
82 | | - ] |
83 | | - }, |
84 | | - "sst_dtime": { |
85 | | - "type": "double", |
86 | | - "valid_min": -32765, |
87 | | - "valid_max": 32765, |
88 | | - "units": "second", |
89 | | - "long_name": "time difference from reference time", |
90 | | - "comment": "time plus sst_dtime gives seconds after 00:00:00 UTC January 1, 1981.", |
91 | | - "grid_mapping": "crs" |
92 | | - }, |
93 | | - "l2p_flags": { |
94 | | - "type": "float", |
95 | | - "valid_min": -32765, |
96 | | - "valid_max": 32765, |
97 | | - "long_name": "L2P flags", |
98 | | - "comment": "These flags are important to properly use the data. Data not flagged as microwave are sourced from an infrared sensor. The lake and river flags are currently not set, but defined in GDS2.0r4. Night flag indicates a night pixel. If night flag is not set then pixel is either daytime or within 5 degrees of a 90 degree solar zenith angle. The terminator flag indicates that the sun is near the horizon. The analysis flag indicates high difference from analysis temperatures (differences greater than Analysis Limit). The lowwind flag indicates regions of low wind speed (typically less than the low Wind Limit) per NWP model. The highwind flag indicates regions of high wind speed (typically greater than the high Wind Limit) per NWP model. Other flags may be populated and are for internal use and the definitions may change, so should not be relied on. Use flag_meanings to confirm the flag assignment that can be relied on. Flags greater than 64 only apply to non-land pixels.", |
99 | | - "flag_meanings": "microwave land ice lake river reserved reserved analysis lowwind highwind night terminator reserved reserved reserved", |
100 | | - "grid_mapping": "crs", |
101 | | - "flag_masks": [ |
102 | | - 1, |
103 | | - 2, |
104 | | - 4, |
105 | | - 8, |
106 | | - 16, |
107 | | - 32, |
108 | | - 64, |
109 | | - 128, |
110 | | - 256, |
111 | | - 512, |
112 | | - 1024, |
113 | | - 2048, |
114 | | - 4096, |
115 | | - 8192, |
116 | | - 16384 |
117 | | - ] |
118 | | - }, |
119 | | - "sses_count": { |
120 | | - "type": "double", |
121 | | - "valid_min": -127, |
122 | | - "valid_max": 127, |
123 | | - "clip_min": 0.0, |
124 | | - "clip_max": 582.2729491442008, |
125 | | - "units": "count", |
126 | | - "long_name": "SSES count", |
127 | | - "comment": "Weighted representative number of swath pixels, per https://imos.org.au/facilities/srs/sstproducts/sstdata0/sstdata-ghrsstfilefields. EXPERIMENTAL_FIELD", |
128 | | - "grid_mapping": "crs" |
129 | | - }, |
130 | | - "dt_analysis": { |
131 | | - "type": "double", |
132 | | - "valid_min": -127, |
133 | | - "valid_max": 127, |
134 | | - "units": "Kelvin", |
135 | | - "long_name": "deviation from last SST analysis", |
136 | | - "comment": "The difference between this SST and the previous day's L4 Foundation SST.", |
137 | | - "source": "ABOM-L4LRfnd-GLOB-GAMSSA_28km", |
138 | | - "grid_mapping": "crs" |
139 | | - }, |
140 | | - "wind_speed": { |
141 | | - "type": "double", |
142 | | - "valid_min": -127, |
143 | | - "valid_max": 127, |
144 | | - "clip_min": 0.0, |
145 | | - "clip_max": 17.645092003135954, |
146 | | - "units": "m s-1", |
147 | | - "long_name": "wind_speed", |
148 | | - "standard_name": "wind_speed", |
149 | | - "comment": "Typically represent surface winds (10 meters above the sea surface).", |
150 | | - "source": "ACCESSG-ABOM-Forecast-WSP", |
151 | | - "grid_mapping": "crs" |
152 | | - }, |
153 | | - "satellite_zenith_angle": { |
154 | | - "type": "double", |
155 | | - "valid_min": -127, |
156 | | - "valid_max": 127, |
157 | | - "clip_min": 0.0, |
158 | | - "clip_max": 69.9903600185546, |
159 | | - "units": "angular_degree", |
160 | | - "long_name": "satellite_zenith angle", |
161 | | - "comment": "The satellite zenith angle at the time of the SST observations", |
162 | | - "grid_mapping": "crs" |
| 5 | + "cloud_optimised_format": "zarr", |
| 6 | + "run_settings": { |
| 7 | + "paths": [ |
| 8 | + { |
| 9 | + "type": "files", |
| 10 | + "s3_uri": "s3://imos-data/IMOS/SRS/SST/ghrsst/L3C-4h/h08/", |
| 11 | + "filter": [ |
| 12 | + ".*\\.nc$" |
| 13 | + ], |
| 14 | + "year_range": [ |
| 15 | + 2015, |
| 16 | + 2022 |
| 17 | + ] |
| 18 | + } |
| 19 | + ], |
| 20 | + "cluster": { |
| 21 | + "mode": "coiled", |
| 22 | + "restart_every_path": true |
163 | 23 | }, |
164 | | - "sea_ice_fraction": { |
165 | | - "type": "double", |
166 | | - "valid_min": -127, |
167 | | - "valid_max": 127, |
168 | | - "units": "1", |
169 | | - "long_name": "sea_ice_fraction", |
170 | | - "standard_name": "sea_ice_area_fraction", |
171 | | - "comment": "Fractional sea ice cover (unitless) derived from near real-time UKMO OSTIA Daily 0.05 degree L4, an optimal interpolation of the operational near real-time EUMETSAT OSI-SAF SSMIS daily 10 km Level 3 sea ice concentration fields (Good et al., 2020, Remote Sensing, https://dx.doi.org/10.3390/rs12040720).", |
172 | | - "source": "OSTIA-UKMO-L4-GLOB-v2.0", |
173 | | - "grid_mapping": "crs" |
| 24 | + "clear_existing_data": true, |
| 25 | + "raise_error": false, |
| 26 | + "coiled_cluster_options": { |
| 27 | + "n_workers": [ |
| 28 | + 25, |
| 29 | + 100 |
| 30 | + ], |
| 31 | + "scheduler_vm_types": "m7i-flex.large", |
| 32 | + "worker_vm_types": "m7i-flex.large", |
| 33 | + "allow_ingress_from": "me", |
| 34 | + "compute_purchase_option": "spot_with_fallback", |
| 35 | + "worker_options": { |
| 36 | + "nthreads": 4, |
| 37 | + "memory_limit": "32GB" |
| 38 | + } |
174 | 39 | }, |
175 | | - "crs": { |
176 | | - "type": "int32", |
177 | | - "long_name": "coordinate reference system", |
178 | | - "grid_mapping_name": "latitude_longitude", |
179 | | - "semi_major_axis": 6379137.0, |
180 | | - "inverse_flattening": 298.257223563, |
181 | | - "epsg_code": "EPSG:4326" |
182 | | - } |
| 40 | + "batch_size": 20 |
183 | 41 | }, |
| 42 | + "metadata_uuid": "06d2fff4-8e2c-4bd7-b98f-cd98e588df6f", |
184 | 43 | "aws_opendata_registry": { |
185 | 44 | "Name": "Satellite - Sea surface temperature - Level 3 - Single sensor - Himawari-8 - 4 hour", |
186 | 45 | "Description": "This is a regional GHRSST level 3 collated (L3C) dataset on 0.02-degree rectangular grid over the Australasian domain (70E to 190E, 70S to 20N) based on retrievals from the AHI imager on board Himawari-8 satellite. The Bureau of Meteorology (Bureau) produces Integrated Marine Observing System (IMOS) satellite SST products in the International Group for High Resolution SST (GHRSST) GDS2 file formats for Himawari-8 in real time and delayed mode. This product is composed of reprocessed multi-swath SSTskin retrievals obtained from compositing IMOS Himawari-8 hourly L3C files over the night (before dawn). \n\n\nEvery 10 minutes, the Himawari-8 full disk is processed to retrieve SSTs by using the Radiative Transfer Model (RTTOV12.3) and Bayesian cloud clearing method based on the ESA CCI SST code developed at the University of Reading. The hourly product on the native grid is then produced by compositing over multiple swaths for the previous 1 hour by selecting the highest quality data with priority given to the value closest in time to the product nominal hour. L3C-04hour SSTs are the latest 4-hour pixels with the highest quality taken from the hourly SST product. The L3C-04hour product on native grid is then remapped over the 0.02-degree IMOS grid to compose the IMOS L3C-04hour product (Govekar et al., 2021, https://www.foo.org.au/wp-content/uploads/2021/11/Govekar_FOO_2021.pdf). The product format is compliant with the GHRSST Data Specification (GDS) version 2.", |
|
195 | 54 | "License": "http://creativecommons.org/licenses/by/4.0/", |
196 | 55 | "Resources": [ |
197 | 56 | { |
198 | | - "Description": "Cloud Optimised AODN dataset of IMOS - SRS - SST - L3C - Himawari-8 - 4 hour - Australia", |
| 57 | + "Description": "Cloud Optimised AODN dataset of FILL UP MANUALLY - CHECK DOCUMENTATION", |
199 | 58 | "ARN": "arn:aws:s3:::aodn-cloud-optimised/satellite_ghrsst_l3c_4hour_himawari8.zarr", |
200 | 59 | "Region": "ap-southeast-2", |
201 | 60 | "Type": "S3 Bucket" |
|
204 | 63 | "DataAtWork": { |
205 | 64 | "Tutorials": [ |
206 | 65 | { |
207 | | - "Title": "Accessing IMOS - SRS - SST - L3C - Himawari-8 - 4 hour - Australia", |
| 66 | + "Title": "Accessing FILL UP MANUALLY - CHECK DOCUMENTATION", |
208 | 67 | "URL": "https://github.com/aodn/aodn_cloud_optimised/blob/main/notebooks/satellite_ghrsst_l3c_4hour_himawari8.ipynb", |
209 | 68 | "NotebookURL": "https://githubtocolab.com/aodn/aodn_cloud_optimised/blob/main/notebooks/satellite_ghrsst_l3c_4hour_himawari8.ipynb", |
210 | 69 | "AuthorName": "Laurent Besnard", |
|
220 | 79 | ] |
221 | 80 | }, |
222 | 81 | "Citation": "The citation in a list of references is: \"IMOS [year-of-data-download], [Title], [data-access-URL], accessed [date-of-access].\"" |
223 | | - }, |
224 | | - "run_settings": { |
225 | | - "coiled_cluster_options": { |
226 | | - "n_workers": [ |
227 | | - 30, |
228 | | - 150 |
229 | | - ], |
230 | | - "scheduler_vm_types": "m7i.2xlarge", |
231 | | - "worker_vm_types": "m7i.2xlarge", |
232 | | - "allow_ingress_from": "me", |
233 | | - "compute_purchase_option": "spot_with_fallback", |
234 | | - "worker_options": { |
235 | | - "nthreads": 16, |
236 | | - "memory_limit": "64GB" |
237 | | - } |
238 | | - }, |
239 | | - "batch_size": 100, |
240 | | - "cluster": { |
241 | | - "mode": "coiled", |
242 | | - "restart_every_path": true |
243 | | - }, |
244 | | - "paths": [ |
245 | | - { |
246 | | - "s3_uri": "s3://imos-data/IMOS/SRS/SST/ghrsst/L3C-4h/h08", |
247 | | - "filter": [], |
248 | | - "year_range": [ |
249 | | - 2015, |
250 | | - 2024 |
251 | | - ] |
252 | | - } |
253 | | - ], |
254 | | - "clear_existing_data": true, |
255 | | - "raise_error": false |
256 | | - }, |
257 | | - "schema_transformation": { |
258 | | - "global_attributes": { |
259 | | - "set": { |
260 | | - "title": "" |
261 | | - } |
262 | | - }, |
263 | | - "dimensions": { |
264 | | - "time": { |
265 | | - "name": "time", |
266 | | - "chunk": 100, |
267 | | - "rechunk": true, |
268 | | - "append_dim": true |
269 | | - }, |
270 | | - "latitude": { |
271 | | - "name": "lat", |
272 | | - "chunk": 100 |
273 | | - }, |
274 | | - "longitude": { |
275 | | - "name": "lon", |
276 | | - "chunk": 100 |
277 | | - } |
278 | | - } |
279 | 82 | } |
280 | 83 | } |
0 commit comments