Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/main/java/org/apache/sysds/hops/Hop.java
Original file line number Diff line number Diff line change
Expand Up @@ -265,7 +265,7 @@ else if ( DMLScript.getGlobalExecMode() == ExecMode.SINGLE_NODE && _etypeForced
if(_etypeForced != ExecType.CP && _etypeForced != ExecType.GPU)
_etypeForced = ExecType.CP;
}
else if (DMLScript.USE_OOC){
else if (DMLScript.USE_OOC && !(this instanceof BinaryOp)){
_etypeForced = ExecType.OOC;
}
else {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
import org.apache.sysds.common.Types.OpOpData;
import org.apache.sysds.hops.DataOp;
import org.apache.sysds.hops.Hop;
import org.apache.sysds.hops.ReorgOp;

import java.util.ArrayList;
import java.util.HashMap;
Expand Down Expand Up @@ -138,7 +139,9 @@ private void findRewriteCandidates(Hop hop) {
if (DMLScript.USE_OOC
&& hop.getDataType().isMatrix()
&& !HopRewriteUtils.isData(hop, OpOpData.TEE)
&& hop.getParent().size() > 1)
&& hop.getParent().size() > 1
&& isSelfTranposePattern(hop)
)
{
rewriteCandidates.add(hop);
}
Expand Down Expand Up @@ -174,4 +177,22 @@ private void applyTopDownTeeRewrite(Hop sharedInput) {
handledHop.put(sharedInput.getHopID(), teeOp);
rewrittenHops.add(sharedInput.getHopID());
}

private boolean isSelfTranposePattern (Hop hop) {
boolean hasTransposeConsumer = false; // t(X)
boolean hasMatrixMultiplyConsumer = false; // %*%

for (Hop parent: hop.getParent()) {
String opString = parent.getOpString();
if (parent instanceof ReorgOp) {
if (HopRewriteUtils.isTransposeOperation(parent)) {
hasTransposeConsumer = true;
}
}
else if (HopRewriteUtils.isMatrixMultiply(parent)) {
hasMatrixMultiplyConsumer = true;
}
}
return hasTransposeConsumer && hasMatrixMultiplyConsumer;
}
}
176 changes: 176 additions & 0 deletions src/test/java/org/apache/sysds/test/functions/ooc/lmDSTest.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

package org.apache.sysds.test.functions.ooc;

import org.apache.sysds.common.Types;
import org.apache.sysds.runtime.io.MatrixWriter;
import org.apache.sysds.runtime.io.MatrixWriterFactory;
import org.apache.sysds.runtime.matrix.data.MatrixBlock;
import org.apache.sysds.runtime.matrix.data.MatrixValue;
import org.apache.sysds.runtime.meta.MatrixCharacteristics;
import org.apache.sysds.runtime.util.DataConverter;
import org.apache.sysds.runtime.util.HDFSTool;
import org.apache.sysds.test.AutomatedTestBase;
import org.apache.sysds.test.TestConfiguration;
import org.apache.sysds.test.TestUtils;
import org.junit.Assert;
import org.junit.Test;

import java.io.IOException;
import java.util.HashMap;
import java.util.Random;

public class lmDSTest extends AutomatedTestBase {
private final static String TEST_NAME1 = "lmDS";
private final static String TEST_DIR = "functions/ooc/";
private final static String TEST_CLASS_DIR = TEST_DIR + lmDSTest.class.getSimpleName() + "/";
private final static double eps = 1e-10;
private static final String INPUT_NAME = "X";
private static final String INPUT_NAME2 = "y";
private static final String OUTPUT_NAME = "R";

private final static int rows = 100000;
private final static int cols_wide = 500;
private final static int cols_skinny = 500;

private final static double sparsity1 = 0.7;
private final static double sparsity2 = 0.1;

@Override
public void setUp() {
TestUtils.clearAssertionInformation();
TestConfiguration config = new TestConfiguration(TEST_CLASS_DIR, TEST_NAME1);
addTestConfiguration(TEST_NAME1, config);
}

@Test
public void testlmDS1() {
runMatrixVectorMultiplicationTest(cols_wide, false);
}

@Test
public void testlmDS2() {
runMatrixVectorMultiplicationTest(cols_skinny, false);
}

private void runMatrixVectorMultiplicationTest(int cols, boolean sparse )
{
Types.ExecMode platformOld = setExecMode(Types.ExecMode.SINGLE_NODE);

try
{
getAndLoadTestConfiguration(TEST_NAME1);
String HOME = SCRIPT_DIR + TEST_DIR;
fullDMLScriptName = HOME + TEST_NAME1 + ".dml";
programArgs = new String[]{"-explain", "-stats", "-ooc",
"-args", input(INPUT_NAME), input(INPUT_NAME2), output(OUTPUT_NAME)};

// 1. Generate the data in-memory as MatrixBlock objects
double[][] A_data = getRandomMatrix(rows, cols, 0, 1, sparse?sparsity2:sparsity1, 7);
// double[][] A_data = generateFullRankMatrix(rows, cols, 10L);
double[][] x_data = getRandomMatrix(rows, 1, 0, 1, 1.0, 3);
// double[][] x_data = getRandomMatrix(rows, 1, 0, 1, 1.0, 20L);

// 2. Convert the double arrays to MatrixBlock objects
MatrixBlock A_mb = DataConverter.convertToMatrixBlock(A_data);
MatrixBlock x_mb = DataConverter.convertToMatrixBlock(x_data);

// 3. Create a binary matrix writer
MatrixWriter writer = MatrixWriterFactory.createMatrixWriter(Types.FileFormat.BINARY);

// 4. Write matrix A to a binary SequenceFile
writer.writeMatrixToHDFS(A_mb, input(INPUT_NAME), rows, cols, 1000, A_mb.getNonZeros());
HDFSTool.writeMetaDataFile(input(INPUT_NAME + ".mtd"), Types.ValueType.FP64,
new MatrixCharacteristics(rows, cols, 1000, A_mb.getNonZeros()), Types.FileFormat.BINARY);

// 5. Write vector x to a binary SequenceFile
writer.writeMatrixToHDFS(x_mb, input(INPUT_NAME2), rows, 1, 1000, x_mb.getNonZeros());
HDFSTool.writeMetaDataFile(input(INPUT_NAME2 + ".mtd"), Types.ValueType.FP64,
new MatrixCharacteristics(rows, 1, 1000, x_mb.getNonZeros()), Types.FileFormat.BINARY);

fullRScriptName = HOME + TEST_NAME1 + ".R";
rCmd = "Rscript" + " " + fullRScriptName + " " + inputDir() + " " + expectedDir();

boolean exceptionExpected = false;
runTest(true, exceptionExpected, null, -1);
// runRScript(true);

// HashMap<MatrixValue.CellIndex, Double> dmlfile = readDMLMatrixFromOutputDir(OUTPUT_NAME);

double[][] C1 = readMatrix(output(OUTPUT_NAME), Types.FileFormat.BINARY, rows, cols, 1000, 1000);
double result = 0.0;
for(int i = 0; i < 100; i++) { // verify the results with Java
double expected = 0.0;
for(int j = 0; j < 100; j++) {
expected += A_mb.get(i, j) * x_mb.get(j,0);
}
result = C1[i][0];
System.out.println("(i): " + i + " ->> expected" + expected + ", result: " + result);
// Assert.assertEquals(expected, result, eps);
}
}
catch (IOException e) {
throw new RuntimeException(e);
}
finally {
resetExecMode(platformOld);
}
}

private static double[][] readMatrix(String fname, Types.FileFormat fmt, long rows, long cols, int brows, int bcols )
throws IOException
{
MatrixBlock mb = DataConverter.readMatrixFromHDFS(fname, fmt, rows, cols, brows, bcols);
double[][] C = DataConverter.convertToDoubleMatrix(mb);
return C;
}

/**
* Generates a matrix that is guaranteed to have full column rank,
* preventing a singular t(X)%*%X matrix.
*
* @param rows Number of rows
* @param cols Number of columns (must be <= rows)
* @param seed Random seed
* @return A new double[][] matrix
*/
private double[][] generateFullRankMatrix(int rows, int cols, long seed) {
if (cols > rows) {
throw new IllegalArgumentException("For a full-rank matrix, cols must be <= rows.");
}
double[][] A = new double[rows][cols];
Random rand = new Random(seed);

// 1. Create a dominant diagonal by starting with an identity-like structure
for (int i = 0; i < cols; i++) {
A[i][i] = 1.0;
}

// 2. Add small random noise to all other elements to ensure non-singularity
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (i != j) { // Don't overwrite the dominant diagonal
A[i][j] = rand.nextDouble() * 0.1; // Small noise
}
}
}
return A;
}
}
33 changes: 33 additions & 0 deletions src/test/scripts/functions/ooc/lmDS.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------

args<-commandArgs(TRUE)
options(digits=22)
library("Matrix")

X = as.matrix(readMM(paste(args[1], "X.mtd", sep="")))
y = as.matrix(readMM(paste(args[1], "y.mtd", sep="")))
# C = lm.fit(X, y)$coefficients
XtX <- t(X) %*% X
Xty <- t(X) %*% y
R <- solve(XtX, Xty)

writeMM(as(R, "CsparseMatrix"), paste(args[2], "C", sep=""))
28 changes: 28 additions & 0 deletions src/test/scripts/functions/ooc/lmDS.dml
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------

X = read($1)
y = read($2)

XtX = t(X) %*% X; # 500 x 10000 -- 10000 x 500 == 500 x 500
Xty = t(X) %*% y; # 500 x 10000 -- 10000 x 1 == 500 x 1
R = solve(XtX, Xty)
write(R, $3, format="binary")
Loading