1.1.0
Distilabel 1.1.0
Two new tasks implemented!
Genstruct task (#600)
You can now use Genstruct task as described in https://huggingface.co/NousResearch/Genstruct-7B, to generate synthetic instruction fine-tuning datasets from a raw document:
from distilabel.llms import TransformersLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import KeepColumns, LoadDataFromDicts
from distilabel.steps.tasks import Genstruct
with Pipeline(name="harry-potter-genstruct") as pipeline:
load_hub_dataset = LoadDataFromDicts(
name="load_dataset",
data=[
{
"title": "Harry Potter and the Sorcerer's Stone",
"content": "An orphaned boy enrolls in a school of wizardry, where he learns the truth about himself, his family and the terrible evil that haunts the magical world.",
},
{
"title": "Harry Potter and the Chamber of Secrets",
"content": "Harry Potter lives his second year at Hogwarts with Ron and Hermione when a message on the wall announces that the legendary Chamber of Secrets has been opened. The trio soon realize that, to save the school, it will take a lot of courage.",
},
],
)
task = Genstruct(
name="task",
llm=TransformersLLM(
model="NousResearch/Genstruct-7B",
torch_dtype="float16",
chat_template="{{ messages[0]['content'] }}",
device="cuda:0",
),
num_generations=2,
group_generations=False,
output_mappings={"model_name": "model"},
)PrometheusEval task (#610)
A new PrometheusEval task, based on the recently published paper "Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models":
from distilabel.steps.tasks import PrometheusEval
with Pipeline(name="prometheus") as pipeline:
load_dataset = LoadHubDataset(
name="load_dataset",
repo_id="HuggingFaceH4/instruction-dataset",
split="test",
output_mappings={"prompt": "instruction", "completion": "generation"},
)
task = PrometheusEval(
name="task",
llm=vLLM(
model="prometheus-eval/prometheus-7b-v2.0",
chat_template="[INST] {{ messages[0]['content'] }}\n{{ messages[1]['content'] }}[/INST]",
),
mode="absolute",
rubric="factual-validity",
reference=False,
num_generations=1,
group_generations=False,
)
load_dataset >> taskConnect the steps in the pipeline with >> (#490)
Now you can connect your steps using the binary shift operator in python:
from distilabel.pipeline import Pipeline
from distilabel.steps.generators.huggingface import LoadHubDataset
from distilabel.steps.task.evol_instruct.base import EvolInstruct
from distilabel.steps.combine import CombineColumns
with Pipeline(name="Pipe name") as pipeline:
load_hub_dataset = LoadHubDataset(name="load_dataset", batch_size=8)
evol_instruction_complexity_1 = EvolInstruct(
llm=OpenAILLM(model="gpt-3.5-turbo"),
)
evol_instruction_complexity_2 = EvolInstruct(
llm=InferenceEndpointsLLM(model_id="mistralai/Mixtral-8x7B-Instruct-v0.1"),
)
combine_columns = CombineColumns(
columns=["response"],
output_columns=["candidates"],
)
(
load_hub_dataset
>> [evol_instruction_complexity_1, evol_instruction_complexity_2]
>> combine_columns
)Routing batch function (#595)
Thanks to the new routing_batch_function, each batch of an upstream step can be routed conditionally to a list of specific downstream steps. In addition, we have included a sample_n_steps routing batch function, making easier replicating the definition of the original UltraFeedback paper:
import random
from distilabel.llms import MistralLLM, OpenAILLM, VertexAILLM
from distilabel.pipeline import Pipeline, routing_batch_function
from distilabel.steps import CombineColumns, LoadHubDataset
from distilabel.steps.tasks import TextGeneration
@routing_batch_function()
def sample_two_steps(steps: list[str]) -> list[str]:
return random.sample(steps, 2)
with Pipeline("pipe-name", description="My first pipe") as pipeline:
load_dataset = LoadHubDataset(
name="load_dataset",
output_mappings={"prompt": "instruction"},
)
tasks = []
for llm in (
OpenAILLM(model="gpt-4-0125-preview"),
MistralLLM(model="mistral-large-2402"),
VertexAILLM(model="gemini-1.0-pro"),
):
tasks.append(
TextGeneration(name=f"text_generation_with_{llm.model_name}", llm=llm)
)
combine_generations = CombineColumns(
name="combine_generations",
columns=["generation", "model_name"],
output_columns=["generations", "model_names"],
)
load_dataset >> sample_two_steps >> tasks >> combine_generationsGenerate structured outputs using outlines (#601)
You can generate JSON or regex using TransformersLLM, LlamaCppLLM or vLLM thanks to the integration with [outlines](https://github.com/outlines-dev/outlines)
from enum import Enum
from distilabel.llms import LlamaCppLLM
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromDicts
from distilabel.steps.tasks import TextGeneration
from pydantic import BaseModel, StringConstraints, conint
from typing_extensions import Annotated
class Weapon(str, Enum):
sword = "sword"
axe = "axe"
mace = "mace"
spear = "spear"
bow = "bow"
crossbow = "crossbow"
class Armor(str, Enum):
leather = "leather"
chainmail = "chainmail"
plate = "plate"
mithril = "mithril"
class Character(BaseModel):
name: Annotated[str, StringConstraints(max_length=30)]
age: conint(gt=1, lt=3000)
armor: Armor
weapon: Weapon
with Pipeline("RPG-characters") as pipeline:
system_prompt = (
"You are a leading role play gamer. You have seen thousands of different characters and their attributes."
" Please return a JSON object with common attributes of an RPG character."
)
load_dataset = LoadDataFromDicts(
name="load_instructions",
data=[
{
"system_prompt": system_prompt,
"instruction": f"Give me a character description for a {char}",
}
for char in ["dwarf", "elf", "human", "ork"]
],
)
text_generation = TextGeneration(
name="text_generation_rpg",
llm=LlamaCppLLM(
model_path="model/path", # type: ignore
structured_output={"format": "json", "schema": Character},
),
)
load_dataset >> text_generationNew GroqLLM (#583)
New integration with groq, special mention to @kcentric which did the initial work prior to the refactor for 1.0.0
from distilabel.llms.groq import GroqLLM
from distilabel.pipeline import Pipeline
from distilabel.steps.tasks import TextGeneration
with Pipeline(name="text-generation-groq") as pipeline:
...
text_generation_with_groq = TextGeneration(
llm=GroqLLM(model="llama3-70b-8192"),
)
...Easily test your pipeline doing a dry_run (#635)
with Pipeline(...) as pipeline:
...
distiset = pipeline.dry_run(
parameters=..., # The same argument as `Pipeline.run`
batch_size=1 # Optional, will be set to 1 by default.
)[05/13/24 16:22:30] INFO ['distilabel.pipeline.local'] 🌵 Dry run mode local.py:103
INFO ['distilabel.pipeline.local'] 📝 Pipeline data will be ... local.py:125Pipeline.log file is dumped to the Hugging Face repository (#568)
Now on when you call distiset.push_to_hub, the pipeline.log file will be automatically dumped to your dataset repository with the pipeline.yaml to keep track of the execution.
New distilabel_metadata column to store internal data (#586)
You can now optionally enable the addition of a metadata column. This column can store other things in the future, but for the moment can be really handy to keep the raw output from an LLM, and in case it does some post processing via format_output , keep the original output to avoid lossing anything.
You can include the metadata at the task level as:
TextGeneration(..., add_raw_output=True|False)And directly determine whether you want this column in your final Distiset:
with Pipeline(...,enable_metadata=True|False):
...This way we can decide to remove all the column altogether.
All the changes in this PR
- Allow nested connect calls and overload rshift method to connect steps by @plaguss in #490
- Fix
llm_blenderinstallation by @alvarobartt in #557 - Warn user about unknown runtime parameters by @plaguss in #555
- Add missing
model_name, update docstrings, and add*.jinja2templates toTasksubclasses by @alvarobartt in #560 - Split
ChatGenerationfromTextGenerationby @alvarobartt in #558 - Set
extra="forbid"in{_Step,LLM}.model_configby @alvarobartt in #577 - Infer step name by @plaguss in #575
- Change the context of subprocesses depending on the platform by @plaguss in #578
- Dump logs within a file in .cache/distilabel/pipelines dir by @plaguss in #568
- Fix empty batches causing missaligment when branching by @gabrielmbmb in #590
- Add
GroqLLMby @alvarobartt in #583 - Add
Format{Chat,Text}Generation{DPO,SFT}by @alvarobartt in #584 - Fix
titleinRatingQuestionofPreferenceToArgillaby @alvarobartt in #597 - Set
streaming=Falseand addnum_examplestoLoadHubDatasetby @plaguss in #565 - Make
pipelineargument ofStepoptional by @plaguss in #566 - Extend
LLMkwargs to align with counterparts by @alvarobartt in #594 - Add
Genstructtask by @alvarobartt in #600 - Fix
num_examplesto be optional inLoadHubDatasetby @plaguss in #603 - Fix
list_files_in_dirreturning unsorted files by @gabrielmbmb in #609 - Add
PrometheusEvaltask by @alvarobartt in #610 - Update
ValueErroron missing inputs message by @alvarobartt in #617 - Add
routing_batch_functionby @gabrielmbmb in #595 - Fix
pipeline.loginconsistency & include LLM info in signature by @plaguss in #598 - Add custom
rubricsattribute toPrometheusEvalby @alvarobartt in #621 - Update
UltraFeedbackpaper replication to userouting_batch_functionby @gabrielmbmb in #620 - Add
distilabel_metadatacolumn to the datasets to include general data by @plaguss in #586 - Add the option of passing the multiprocessing context via env var by @plaguss in #604
- Add name of the pipeline to group the hashed folders by it by @plaguss in #626
- Add
routing_batch_functionserialization by @gabrielmbmb in #628 - Excluding model path in serialization of llamacpp by @ignacioct in #633
- Fix problem with sorting method in
list_files_in_dirfunction by @plaguss in #622 - Add
dry_runmethod to the pipelines to run with a single example. by @plaguss in #635 - [FEATURE] Add structured outputs using
outlinesby @plaguss in #601 - Force pipeline stop after 2 SIGINT signals caught by @plaguss in #630
- Refactor and update
docsby @alvarobartt in #634 - Export components info & components gallery in docs by @gabrielmbmb in #640
- Documentation updates by @plaguss in #646
- Refactor docs 1.1.0 by @plaguss in #650
- Fix routing batch function deadlocks and unordered batches by @gabrielmbmb in #649
Full Changelog: 1.0.3...1.1.0