This repository contains the implementation of my technical report paper "Towards Practical Concept-Based Language Models: An Efficiency-Focused Implementation". Our work demonstrates significant efficiency improvements in language processing through concept-based approaches.
- 🚀 3.8× faster inference through sentence-level processing
- 📉 Linear memory scaling (O(n)) for long sequences
- 🌍 Multilingual support with minimal performance drop
- 💡 Adaptive concept quantization
- 🔄 Hybrid attention mechanism
- 📊 Geometric regularization for semantic fidelity
# Clone the repository
git clone https://github.com/arimanyus/large-concept-model
cd large-concept-model
# Create a virtual environment
python -m venv env
source env/bin/activate # On Windows: env\Scripts\activate
# Install dependencies
pip install -r requirements.txtfrom lcm import ConceptModel
# Initialize model
model = ConceptModel.from_pretrained('lcm-base')
# Process text
concepts = model.extract_concepts("Your input text here")
output = model.generate(concepts)To train your own model:
python train.py \
--data_path path/to/data \
--batch_size 32 \
--learning_rate 5e-5 \
--max_steps 50000Run evaluation on standard benchmarks:
python evaluate.py \
--model_path path/to/model \
--dataset cnn_dailymailOur implementation consists of three main components:
- Concept Formation: Converts text to compressed concept embeddings
- Concept Processing: 4-layer transformer with modified attention
- Hybrid Generation: Combines concept and token-level processing
Key hyperparameters used in our experiments:
| Parameter | Value |
|---|---|
| Learning Rate | 5e-5 |
| Batch Size | 32 |
| Warmup Steps | 1000 |
| Max Steps | 50000 |
| Weight Decay | 0.01 |
| Concept Dimension | 768 |
| Transformer Layers | 4 |
| Attention Heads | 8 |
| α (Hybrid Attention) | 0.7 |
Our model achieves:
- 82% ROUGE-L retention compared to BART
- 0.82 concept cluster purity
- 4% average performance drop in multilingual settings
Generate concept space visualizations:
python visualize.py --embedding_dir path/to/embeddingsIf you use this code in your research, please cite our paper:
@article{tiwari2024towards,
title={Towards Practical Concept-Based Language Models: An Efficiency-Focused Implementation},
author={Tiwari, Vivek K.},
journal={arXiv preprint arXiv:2024.6154975},
year={2024}
}This project is licensed under the MIT License - see the LICENSE file for details.
We welcome contributions! Please check our contributing guidelines for details.
- IBM for technical guidance
- The authors of the original LCM paper
- The open-source NLP community
- Vivek K. Tiwari - [email protected] / [email protected]
- Project Link: https://github.com/arimanyus/large-concept-model