Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 32 additions & 13 deletions balrog/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,12 +181,19 @@ def generate(self, messages):
converted_messages = self.convert_messages(messages)

def api_call():
return self.client.chat.completions.create(
messages=converted_messages,
model=self.model_id,
temperature=self.client_kwargs.get("temperature", 0.5),
max_tokens=self.client_kwargs.get("max_tokens", 1024),
)
# Create kwargs for the API call
api_kwargs = {
"messages": converted_messages,
"model": self.model_id,
"max_tokens": self.client_kwargs.get("max_tokens", 1024),
}

# Only include temperature if it's not None
temperature = self.client_kwargs.get("temperature")
if temperature is not None:
api_kwargs["temperature"] = temperature

return self.client.chat.completions.create(**api_kwargs)

response = self.execute_with_retries(api_call)

Expand Down Expand Up @@ -217,11 +224,16 @@ def _initialize_client(self):
if not self._initialized:
self.model = genai.GenerativeModel(self.model_id)

# Create kwargs dictionary for GenerationConfig
client_kwargs = {
"temperature": self.client_kwargs.get("temperature", 0.5),
"max_output_tokens": self.client_kwargs.get("max_tokens", 1024),
}

# Only include temperature if it's not None
temperature = self.client_kwargs.get("temperature")
if temperature is not None:
client_kwargs["temperature"] = temperature

self.generation_config = genai.types.GenerationConfig(**client_kwargs)
self._initialized = True

Expand Down Expand Up @@ -411,12 +423,19 @@ def generate(self, messages):
converted_messages = self.convert_messages(messages)

def api_call():
return self.client.messages.create(
messages=converted_messages,
model=self.model_id,
temperature=self.client_kwargs.get("temperature", 0.5),
max_tokens=self.client_kwargs.get("max_tokens", 1024),
)
# Create kwargs for the API call
api_kwargs = {
"messages": converted_messages,
"model": self.model_id,
"max_tokens": self.client_kwargs.get("max_tokens", 1024),
}

# Only include temperature if it's not None
temperature = self.client_kwargs.get("temperature")
if temperature is not None:
api_kwargs["temperature"] = temperature

return self.client.messages.create(**api_kwargs)

response = self.execute_with_retries(api_call)

Expand Down
2 changes: 1 addition & 1 deletion balrog/config/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ client:
model_id: gpt-4o # Model identifier (e.g., 'gpt-4', 'gpt-3.5-turbo')
base_url: http://localhost:8080/v1 # Base URL for the API (if using a local server)
generate_kwargs:
temperature: 0.0 # Sampling temperature; 0.0 makes the output deterministic
temperature: null # Sampling temperature. If null the API default temperature is used instead
max_tokens: 4096 # Max tokens to generate in the response
timeout: 60 # Timeout for API requests in seconds
max_retries: 5 # Max number of retries for failed API calls
Expand Down
3 changes: 3 additions & 0 deletions docs/evaluation.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,7 @@ python eval.py \
| **client.is_chat_model** | Indicates if the model follows a chat-based interface. | `True` |
| **client.generate_kwargs.temperature** | Temperature for model response randomness. | `0.0` |
| **client.alternate_roles** | If True the instruction prompt will be fused with first observation. Required by some LLMs. | `False` |
| **client.temperature** | If set to null will default to the API default temperature. Use a float from 0.0 to 1.0. otherwise. | `null` |
| **envs.names** | Dash-separated list of environments to evaluate, e.g., `nle-minihack`. | `babyai-babaisai-textworld-crafter-nle-minihack`|


Expand All @@ -103,3 +104,5 @@ python eval.py \
Mac systems might complain about fork when evaluating in multiprocessing mode (`eval.num_workers > 1`). To fix this export the following before running eval: `export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES`
- Alternate roles:
Some LLMs/VLMs require alternating roles. You can fuse the instruction prompt with the first observation to comply with this with the following: `client.alternate_roles=True`
- Temperature:
We recommend running models with temperature ranges around 0.5-0.7, or to use the default temperature of the model APIs. Too low temperatures can cause some of the more brittle models to endlessly repeat actions or create incoherent outputs.