MCP server to search across NVIDIA blogs and releases to empower LLMs to better answer NVIDIA-specific queries.
This Model Context Protocol (MCP) server enables Large Language Models (LLMs) to search across multiple NVIDIA domains to find relevant information about NVIDIA technologies, products, and services.
The server searches across the following NVIDIA domains by default. You can customize this list using the
MCP_NVIDIA_DOMAINS environment variable or the domains parameter in search queries:
- blogs.nvidia.com - NVIDIA blog posts and articles
- build.nvidia.com - NVIDIA AI Foundation models and services
- catalog.ngc.nvidia.com - NGC catalog of GPU-accelerated software
- developer.download.nvidia.com - Developer downloads and resources
- developer.nvidia.com - Developer resources, SDKs, and technical documentation
- docs.api.nvidia.com - API documentation
- docs.nvidia.com - Comprehensive technical documentation
- docs.omniverse.nvidia.com - Omniverse documentation
- forums.developer.nvidia.com - Developer forums
- forums.nvidia.com - Community forums
- ngc.nvidia.com - NVIDIA GPU Cloud
- nvidia.github.io - NVIDIA GitHub Pages documentation
- nvidianews.nvidia.com - Official NVIDIA news and press releases
- research.nvidia.com - NVIDIA research publications
- resources.nvidia.com - NVIDIA resources and whitepapers
Note: For security, only nvidia.com domains and nvidia.github.io are allowed.
- Advanced relevance scoring combining multiple signals
- Intelligent keyword extraction
- Context-aware search with enhanced snippets and highlighting
- Flexible sorting by relevance, publication date, or domain
- Content type detection (tutorials, announcements, guides, forums, etc.)
- Date extraction from HTML metadata and page content
- Publication dates extracted from HTML metadata and text patterns
- Content metadata including author, word count, code/video/image detection
- Structured content types for easy filtering and categorization
- stdio mode (default) - for local MCP clients like Claude Desktop
- HTTP/SSE mode - for remote access and web-based clients
- Structured JSON output compatible with AI agents and LLMs
- Domain-specific filtering for targeted searches
- Configurable domains via environment variable
- Adjustable relevance thresholds and result limits
- Multiple sort options (relevance, date, domain)
npx @bharatr21/mcp-nvidiaOr add to your Claude Desktop config:
{
"mcpServers": {
"nvidia": {
"command": "npx",
"args": ["-y", "@bharatr21/mcp-nvidia"]
}
}
}Note: This requires Python 3.10+ to be installed on your system. The package will automatically use the Python backend.
pip install mcp-nvidiagit clone https://github.com/bharatr21/mcp-nvidia.git
cd mcp-nvidia
pip install -e .The MCP server can be run directly from the command line:
mcp-nvidiaThe server can be configured using environment variables:
MCP_NVIDIA_DOMAINS: Comma-separated list of custom NVIDIA domains to search (overrides defaults)- Security: Only nvidia.com domains and subdomains are allowed. Invalid domains are automatically filtered out.
- Example:
"https://developer.nvidia.com/,https://docs.nvidia.com/"
MCP_NVIDIA_LOG_LEVEL: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
Example:
export MCP_NVIDIA_DOMAINS="https://developer.nvidia.com/,https://docs.nvidia.com/"
export MCP_NVIDIA_LOG_LEVEL="DEBUG"
mcp-nvidiaAdd the following to your Claude Desktop configuration file:
MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"nvidia": {
"command": "mcp-nvidia"
}
}
}With custom configuration (environment variables):
{
"mcpServers": {
"nvidia": {
"command": "mcp-nvidia",
"env": {
"MCP_NVIDIA_LOG_LEVEL": "DEBUG",
"MCP_NVIDIA_DOMAINS": "https://developer.nvidia.com/,https://docs.nvidia.com/"
}
}
}
}If you installed from source, you may need to use the full path to the Python executable:
{
"mcpServers": {
"nvidia": {
"command": "/path/to/python",
"args": ["-m", "mcp_nvidia"]
}
}
}For remote access or public deployment, use HTTP/SSE mode:
# Run in HTTP mode (default port 8000)
mcp-nvidia http
# Custom host and port
mcp-nvidia http --host 0.0.0.0 --port 3000
# Or explicitly use stdio mode (default)
mcp-nvidia stdio
mcp-nvidia # same as stdioConfigure Claude AI for remote server:
{
"mcpServers": {
"nvidia": {
"url": "https://your-server.com/sse",
"transport": "sse"
}
}
}In addition to the standard MCP tool-calling interface, this server exposes TypeScript and Python SDKs as MCP Resources. This enables code execution workflows where AI agents can:
- Discover SDK files via
list_resources() - Read type definitions via
read_resource(uri) - Write code that uses fully-typed interfaces instead of raw tool calls
This approach provides the benefits described in Anthropic's Code Execution with MCP and Cloudflare's Code Mode:
- Type safety - Full TypeScript/Python type hints for inputs and outputs
- Data processing in code - Filter and transform results before returning to the model
- Leverages LLM strengths - LLMs excel at writing code against APIs
The server exposes the following resources via the MCP Resources protocol:
TypeScript SDK:
mcp-nvidia://sdk/typescript/search_nvidia.ts- TypeScript types and interface for search_nvidiamcp-nvidia://sdk/typescript/discover_nvidia_content.ts- TypeScript types for discover_nvidia_contentmcp-nvidia://sdk/typescript/index.ts- Barrel export filemcp-nvidia://sdk/typescript/README.md- TypeScript SDK documentation
Python SDK:
mcp-nvidia://sdk/python/search_nvidia.py- Python types and interface for search_nvidiamcp-nvidia://sdk/python/discover_nvidia_content.py- Python types for discover_nvidia_contentmcp-nvidia://sdk/python/__init__.py- Package exportsmcp-nvidia://sdk/python/README.md- Python SDK documentation
Instead of calling tools directly:
# Traditional MCP tool call
result = call_tool("search_nvidia", {"query": "CUDA", "max_results_per_domain": 5})An agent can discover and use typed SDKs:
// 1. Agent lists resources to discover SDK files
const resources = await client.list_resources();
// Returns: mcp-nvidia://sdk/typescript/search_nvidia.ts, etc.
// 2. Agent reads the TypeScript definitions
const sdkContent = await client.read_resource("mcp-nvidia://sdk/typescript/search_nvidia.ts");
// 3. Agent writes code using the typed interface
import { searchNvidia, SearchNvidiaInput } from "./search_nvidia";
const input: SearchNvidiaInput = {
query: "CUDA programming",
max_results_per_domain: 5,
sort_by: "relevance"
};
const result = await searchNvidia(input);
// 4. Process results in code
const tutorials = result.results.filter(r => r.content_type === "tutorial");
const recent = result.results.filter(r => r.published_date > "2024-01-01");The generated SDK files include:
- TypeScript SDK: Full interfaces with JSDoc + functional wrappers that call MCP tools via client
- Python SDK: TypedDict definitions + direct implementation calls (no MCP overhead!)
- Type-safe input/output schemas
- Example usage code
- Comprehensive documentation
Key Difference:
- Python SDK: Directly calls
mcp_nvidia.libfunctions - no MCP protocol overhead - TypeScript SDK: Calls via MCP client (since implementation is in Python)
Via MCP Client:
Any MCP client that supports resources can access these SDK files:
# List available SDK resources
resources = await mcp_client.list_resources()
# Read a specific SDK file
typescript_sdk = await mcp_client.read_resource("mcp-nvidia://sdk/typescript/search_nvidia.ts")
python_sdk = await mcp_client.read_resource("mcp-nvidia://sdk/python/search_nvidia.py")Using the Python SDK (Direct Calls):
# Import the generated SDK
from mcp_nvidia_sdk import search_nvidia
# Call directly - no MCP overhead!
result = await search_nvidia({
"query": "CUDA optimization",
"max_results_per_domain": 5,
"sort_by": "date"
})
# Process with full type safety
for item in result["results"]:
print(f"{item['title']}: {item['url']}")Using the TypeScript SDK (via MCP Client):
import { searchNvidia, MCPClient } from "./search_nvidia";
// Get MCP client instance
const client: MCPClient = getMCPClient();
// Call via MCP protocol
const result = await searchNvidia({
query: "CUDA optimization",
max_results_per_domain: 5,
sort_by: "date"
}, client);
// Process with full type safety
result.results.forEach(item => {
console.log(`${item.title}: ${item.url}`);
});Generated SDK Structure:
Each SDK includes:
- Type Definitions: Full input/output type definitions automatically generated from tool schemas
- Async Functions: Properly typed async function signatures for each tool
- Documentation: Inline comments and docstrings explaining parameters and return types
- Examples: Usage examples in the generated code
- Index/Init Files: Convenient imports for all tools
The SDK files are automatically generated from the MCP tool schemas when the server starts. They are cached in memory for performance.
Run SDK tests:
# Test SDK generation
pytest tests/test_sdk_generation.py -v
# Test MCP Resources
pytest tests/test_resources.py -v
# Run all tests
pytest tests/ -vThe SDK Resources feature is fully backward compatible. Existing MCP clients can continue using traditional tool calling, while clients that support code execution can use the SDK Resources. Both methods work simultaneously.
Search across NVIDIA domains for specific information. Results include citations with URLs for easy reference.
Parameters:
query(required): The search query to find information across NVIDIA domainsdomains(optional): List of specific NVIDIA domains to search. If not provided, searches all default domainsmax_results_per_domain(optional): Maximum number of results to return per domain (default: 3)min_relevance_score(optional): Minimum relevance score threshold (0-100) to filter results (default: 17)sort_by(optional): Sort order for results - one of:relevance(default): Sort by relevance score (highest first)date: Sort by publication date (newest first)domain: Sort alphabetically by domain name
Example queries:
- "CUDA programming best practices"
- "RTX 4090 specifications"
- "TensorRT optimization techniques"
- "Latest AI announcements"
- "Omniverse development tutorials"
Example usage with sorting:
# Sort by publication date (newest first) - great for finding latest announcements
search_nvidia(query="NIM microservices", sort_by="date")
# Sort by relevance (default) - best for finding most relevant content
search_nvidia(query="CUDA optimization", sort_by="relevance")
# Sort by domain - useful for browsing content by source
search_nvidia(query="TensorRT", sort_by="domain")Features:
- Enhanced search using ddgs package for reliable DuckDuckGo integration with domain filtering
- Structured JSON output: Returns data in a structured format with both machine-readable and human-readable fields
- Context-aware snippets: Automatically fetches surrounding text from source URLs and highlights the
relevant snippet with
**bold**formatting - Relevance scoring (0-100 scale): Each result includes a relevance score based on query term matches in
title, snippet, and URL
- Results are sorted by relevance score (highest first) when using default sorting
- Results below the threshold are automatically filtered out
- Score displayed as "Score: X/100" in formatted text
- Flexible sorting options:
relevance: Sort by relevance score (default)date: Sort by publication date, newest firstdomain: Sort alphabetically by domain name
- Publication date extraction: Automatically extracts dates from HTML metadata (meta tags, time elements) and page content using multiple strategies
- Content type detection: Identifies content as announcements, tutorials, guides, forum discussions, blog posts, documentation, research papers, news, videos, courses, or articles
- Rich metadata extraction:
- Author name from various HTML sources
- Approximate word count
- Code snippet detection
- Video and image detection with counts
- Security controls: Input validation and limits (customizable via code)
- Query/topic length: 500 characters max
- Results per domain: 10 max
- Domain whitelist: nvidia.com and nvidia.github.io only
- Rate limiting: 200ms between search API calls (~5 searches/sec)
- Concurrent searches: 5 max simultaneous searches
- Concurrent search across multiple domains for fast results
- Formatted results with titles, URLs, enhanced snippets with context, and source domains
- Dedicated citations section with numbered references for easy copying
Output Format: Results are returned as structured JSON with the following schema:
{
"success": true,
"results": [
{
"title": "Page Title",
"url": "https://example.nvidia.com/page",
"snippet": "Enhanced snippet with **highlighted** keywords",
"domain": "example.nvidia.com",
"relevance_score": 85,
"published_date": "2025-01-15",
"content_type": "tutorial",
"metadata": {
"author": "John Doe",
"word_count": 1234,
"has_code": true,
"has_video": false,
"has_images": true,
"image_count": 5
}
}
],
"metadata": {
"domains_searched": 16,
"search_time_ms": 1234
}
}Result Fields:
title: Page titleurl: Full URL to the resourcesnippet: Enhanced snippet with bold highlighting for matched keywordsdomain: Source domain (e.g., "docs.nvidia.com")relevance_score: Relevance score from 0-100 based on keyword matchespublished_date(optional): Publication date in YYYY-MM-DD format, extracted from HTML metadata or page contentcontent_type: Detected content type, one of:announcement: Product/feature announcementstutorial: Step-by-step tutorialsguide: How-to guides and best practicesforum_discussion: Forum posts and discussionsblog_post: Blog articlesdocumentation: Technical documentationresearch_paper: Research publicationsnews: News articles and press releasesvideo: Video contentcourse: Training coursesarticle: General articles (default)
metadata(optional): Additional extracted metadata:author: Content author name (if available)word_count: Approximate word counthas_code: Whether the page contains code snippetshas_video: Whether the page contains embedded videoshas_images: Whether the page contains imagesimage_count: Number of images on the page
Note: The published_date and metadata fields are optional and only appear when successfully extracted from the page.
Discover specific types of NVIDIA educational and learning content such as videos, courses, tutorials, webinars, or blog posts.
Parameters:
content_type(required): Type of content to find - one of:video: Video tutorials and demonstrationscourse: Training courses and certifications (NVIDIA DLI)tutorial: Step-by-step guides and how-toswebinar: Webinars and live sessionsblog: Blog posts and articles
topic(required): The topic or technology to find content about (e.g., "CUDA", "Omniverse", "AI")max_results(optional): Maximum number of content items to return (default: 5)
Example queries:
- Find video tutorials:
discover_nvidia_content(content_type="video", topic="CUDA programming") - Find training courses:
discover_nvidia_content(content_type="course", topic="Deep Learning") - Find webinars:
discover_nvidia_content(content_type="webinar", topic="AI in Healthcare")
Features:
- Content-specific search strategies optimized for each type
- Relevance scoring on 0-100 scale to highlight best matches
- Score displayed as "Score: X/100" for transparency
- Direct links to videos, courses, tutorials, and other resources
- Resource links section for easy access to all discovered content
# Clone the repository
git clone https://github.com/bharatr21/mcp-nvidia.git
cd mcp-nvidia
# Create a virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install in development mode with dev dependencies
pip install -e ".[dev]"# Install test dependencies
pip install -e ".[test]"
# Run all tests
pytest tests/ -v
# Run tests excluding slow tests (rate limiting)
pytest tests/ -v -m "not slow"The server uses the Model Context Protocol (MCP) to expose search functionality to LLMs.
sequenceDiagram
participant LLM as LLM/AI Agent
participant MCP as MCP Server
participant Validator as Input Validator
participant RateLimit as Rate Limiter
participant DDGS as DuckDuckGo Search
participant Fetcher as URL Fetcher
LLM->>MCP: search_nvidia(query, domains)
MCP->>Validator: Validate inputs
Validator-->>MCP: ✓ Valid (or ✗ Error)
loop For each domain (max 5 concurrent)
MCP->>RateLimit: Check rate limit
RateLimit-->>MCP: ✓ Proceed (wait 200ms)
MCP->>DDGS: Search "site:domain query"
DDGS-->>MCP: Search results
loop For each result
MCP->>Fetcher: Fetch URL context
Fetcher-->>MCP: Enhanced snippet
end
end
MCP->>MCP: Calculate relevance scores
MCP->>MCP: Sort & format JSON
MCP-->>LLM: Structured JSON response
flowchart TD
A[MCP Client<br/>Claude/LLMs] -->|JSON-RPC| B[MCP Server]
B --> C{Tool Router}
C -->|search_nvidia| D[Search Handler]
C -->|discover_nvidia_content| E[Discovery Handler]
D --> F[Security Layer]
F --> G[Input Validator]
F --> H[Rate Limiter]
F --> I[Concurrency Control]
G --> J[Domain Searcher]
J --> K[DuckDuckGo API]
J --> L[URL Context Fetcher]
L --> M[BeautifulSoup Parser]
J --> N[Relevance Scorer]
N --> O[Response Builder]
O --> P[Structured JSON]
P -->|CallToolResult| A
style F fill:#ffcccc
style P fill:#ccffcc
style K fill:#cce5ff
- Input Validation: Validates query length, domain whitelist, and parameter limits
- Rate Limiting: Enforces 200ms minimum interval between DuckDuckGo API calls
- Concurrent Search: Searches up to 5 domains simultaneously with semaphore control
- Context Enhancement: Fetches actual page content and highlights relevant snippets
- Relevance Scoring: Calculates 0-100 scores based on keyword matches
- JSON Output: Returns structured data compatible with both AI agents and humans
- SDK Generator (New): Automatically generates TypeScript and Python SDKs from tool schemas
- MCP Resources: Exposes generated SDKs as virtual filesystem resources for code execution workflows
The list of searchable domains is configured in src/mcp_nvidia/server.py in the DEFAULT_DOMAINS constant.
To add more NVIDIA domains:
- Edit
src/mcp_nvidia/server.py - Add new domain URLs to the
DEFAULT_DOMAINSlist - Reinstall the package
MIT License - see LICENSE file for details
Contributions are welcome! Please feel free to submit a Pull Request.
For issues, questions, or contributions, please visit the GitHub repository.