Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -22,4 +22,6 @@ docs/site/
# committed for packages, but should be committed for applications that require a static
# environment.
Manifest.toml
.DS_Store
*Zone.Identifier

Binary file modified julia/src/student_submissions/.DS_Store
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,291 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "fccb904f-d62e-4b25-977f-82dd66fb64e9",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"!pip install matplotlib"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "02bd6d01-ebab-4bc9-a046-074e27bdc70d",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"import torchvision\n",
"import torchvision.transforms as transforms\n",
"from torch.utils.data import DataLoader\n",
"import time\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c7eaf60a-ffc1-4477-82be-52a270419856",
"metadata": {},
"outputs": [],
"source": [
"# Define the AlexNet architecture from scratch\n",
"class AlexNet(nn.Module):\n",
" def __init__(self, num_classes=10):\n",
" super(AlexNet, self).__init__()\n",
"\n",
" # Original AlexNet was designed for 224x224 images\n",
" # We'll adapt it for CIFAR-10's 32x32 images by using smaller filters and strides\n",
"\n",
" # Convolutional layers\n",
" self.features = nn.Sequential(\n",
" # Conv1\n",
" nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),\n",
" nn.ReLU(inplace=True),\n",
" nn.MaxPool2d(kernel_size=2, stride=2),\n",
"\n",
" # Conv2\n",
" nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1),\n",
" nn.ReLU(inplace=True),\n",
" nn.MaxPool2d(kernel_size=2, stride=2),\n",
"\n",
" # Conv3\n",
" nn.Conv2d(192, 384, kernel_size=3, padding=1),\n",
" nn.ReLU(inplace=True),\n",
"\n",
" # Conv4\n",
" nn.Conv2d(384, 256, kernel_size=3, padding=1),\n",
" nn.ReLU(inplace=True),\n",
"\n",
" # Conv5\n",
" nn.Conv2d(256, 256, kernel_size=3, padding=1),\n",
" nn.ReLU(inplace=True),\n",
" nn.MaxPool2d(kernel_size=2, stride=2),\n",
" )\n",
"\n",
" # Fully connected layers\n",
" self.classifier = nn.Sequential(\n",
" nn.Dropout(),\n",
" nn.Linear(256 * 28 * 28, 4096), # Correct dimensions for 224x224 input\n",
" nn.ReLU(inplace=True),\n",
" nn.Dropout(),\n",
" nn.Linear(4096, 4096),\n",
" nn.ReLU(inplace=True),\n",
" nn.Linear(4096, num_classes),\n",
" )\n",
"\n",
" def forward(self, x):\n",
" x = self.features(x)\n",
" x = torch.flatten(x, 1)\n",
" x = self.classifier(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5501f661-126d-457f-9c79-86753e5afc9e",
"metadata": {},
"outputs": [],
"source": [
"# Data loading and preprocessing\n",
"def load_cifar10():\n",
" transform_train = transforms.Compose([\n",
" transforms.Resize(224), # AlexNet expects 224x224 images\n",
" transforms.ToTensor(),\n",
" transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n",
" ])\n",
"\n",
" transform_test = transforms.Compose([\n",
" transforms.Resize(224), # Also resize test images to match\n",
" transforms.ToTensor(),\n",
" transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))\n",
" ])\n",
"\n",
" trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)\n",
" trainloader = DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2)\n",
"\n",
" testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)\n",
" testloader = DataLoader(testset, batch_size=32, shuffle=False, num_workers=2)\n",
"\n",
" return trainloader, testloader"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8d40b4f3-37f8-4c5a-8d82-276817afdbfa",
"metadata": {},
"outputs": [],
"source": [
"# Training function\n",
"def train_model(model, trainloader, epochs=10, device='cuda'):\n",
" model = model.to(device)\n",
" criterion = nn.CrossEntropyLoss()\n",
" optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)\n",
" scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs)\n",
"\n",
" model.train()\n",
"\n",
" train_losses = []\n",
" train_accs = []\n",
"\n",
" for epoch in range(epochs):\n",
" running_loss = 0.0\n",
" correct = 0\n",
" total = 0\n",
"\n",
" start_time = time.time()\n",
"\n",
" for i, (inputs, labels) in enumerate(trainloader):\n",
" inputs, labels = inputs.to(device), labels.to(device)\n",
"\n",
" optimizer.zero_grad()\n",
" outputs = model(inputs)\n",
" loss = criterion(outputs, labels)\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" running_loss += loss.item()\n",
"\n",
" _, predicted = outputs.max(1)\n",
" total += labels.size(0)\n",
" correct += predicted.eq(labels).sum().item()\n",
"\n",
" epoch_loss = running_loss / len(trainloader)\n",
" epoch_acc = 100 * correct / total\n",
" epoch_time = time.time() - start_time\n",
"\n",
" train_losses.append(epoch_loss)\n",
" train_accs.append(epoch_acc)\n",
"\n",
" print(f'Epoch {epoch+1}/{epochs}, Loss: {epoch_loss:.4f}, Accuracy: {epoch_acc:.2f}%, Time: {epoch_time:.2f}s')\n",
"\n",
" scheduler.step()\n",
"\n",
" return train_losses, train_accs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0c1eebb2-3e51-4e95-90e5-e0602c0115bc",
"metadata": {},
"outputs": [],
"source": [
"# Evaluation function\n",
"def evaluate_model(model, testloader, device='cuda'):\n",
" model = model.to(device)\n",
" model.eval()\n",
"\n",
" correct = 0\n",
" total = 0\n",
"\n",
" with torch.no_grad():\n",
" for inputs, labels in testloader:\n",
" inputs, labels = inputs.to(device), labels.to(device)\n",
" outputs = model(inputs)\n",
" _, predicted = outputs.max(1)\n",
" total += labels.size(0)\n",
" correct += predicted.eq(labels).sum().item()\n",
"\n",
" accuracy = 100 * correct / total\n",
" return accuracy"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6a886d5a-667d-4260-b0ce-f3697ff884b5",
"metadata": {},
"outputs": [],
"source": [
"# Set epochs and device\n",
"epochs=5\n",
"device='cuda' if torch.cuda.is_available() else 'cpu'\n",
"print(f\"Using device: {device}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6b1ad5c-23c6-4313-8d43-1d9cae492a10",
"metadata": {},
"outputs": [],
"source": [
"trainloader, testloader = load_cifar10()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d19f47b0-8259-49c5-a1ae-e9a80027afd2",
"metadata": {},
"outputs": [],
"source": [
"print(\"\\nTraining custom AlexNet...\")\n",
"custom_alexnet = AlexNet(num_classes=10)\n",
"custom_losses, custom_accs = train_model(custom_alexnet, trainloader, epochs=epochs, device=device)\n",
"custom_test_acc = evaluate_model(custom_alexnet, testloader, device=device)\n",
"print(f\"Custom AlexNet Test Accuracy: {custom_test_acc:.2f}%\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e70be062-f0d6-4ad2-961a-5a87e032af6f",
"metadata": {},
"outputs": [],
"source": [
"# Plot training curves\n",
"plt.figure(figsize=(12, 5))\n",
"\n",
"plt.subplot(1, 2, 1)\n",
"plt.plot(range(1, epochs+1), custom_losses, 'r-', label='Pretrained')\n",
"plt.title('Training Loss')\n",
"plt.xlabel('Epochs')\n",
"plt.ylabel('Loss')\n",
"plt.legend()\n",
"\n",
"plt.subplot(1, 2, 2)\n",
"plt.plot(range(1, epochs+1), custom_accs, 'r-', label='Pretrained')\n",
"plt.title('Training Accuracy')\n",
"plt.xlabel('Epochs')\n",
"plt.ylabel('Accuracy (%)')\n",
"plt.legend()\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading