Mandi Zhao, Yifan Hou, Dieter Fox, Yashraj Narang, Shuran Song*, Ajay Mandlekar*
*Equal Advising
arXiv | Project Website | Code Documentation
- 06/11/2025:
Released all dexterous hand assets and ARCTIC assets used in our recent arXiv preprint. Released detailed instructions for processing new hand assets: see code in
dexmachina/hand_procand hand processing doc page. Pushed a newdexmachina.yamlfile for conda env install. RL training example inexamples/train_rl.sh - 06/03/2025: Initial Release
TODOs
- Advanced rendering code
- RL eval code
- Instructions for processing new hands and demonstrations
- We recommend using conda environment with Python=3.10
conda create -n dexmachina python=3.10
conda activate dexmachina
- Clone and install the below custom forks of Genesis and rl-games:
<!-- pip install torch==2.5.1 -->
pip install torch==2.4.0 # cuda 11.8, python 3.10, pytorch3d
git clone https://github.com/MandiZhao/Genesis.git
cd Genesis
pip install -e .
pip install libigl==2.5.1 # NOTE: this is a temporary fix specifically for my fork of Genesis
git clone https://github.com/MandiZhao/rl_games.git
cd rl_games
pip install -e .
Additional packages needed for RL training:
pip install gymnasium ray seaborn wandb trimesh
If you'd like to install the full conda environment that includes all the packages, use the below yaml file:
# this is obtained from: conda export -f dexmachina.yaml
conda env create -f dexmachina.yaml
- Local install the
dexmachinapackage:
cd dexmachina
pip install -e .
pinocchio + casadi installation —>
conda activate dexmachina
git clone https://github.com/stack-of-tasks/pinocchio.git
cd pinocchio && mkdir build && cd build
conda install -c conda-forge urdfdom_headers urdfdom boost eigenpy casadi
#configure with cmake
cmake .. \ -DCMAKE_BUILD_TYPE=Release \ -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX \ -DPYTHON_EXECUTABLE=$(which python) \ -DBUILD_WITH_CASADI_SUPPORT=ON \ -DBUILD_PYTHON_INTERFACE=ON \ -DBUILD_TESTING=OFF \ -DCMAKE_PREFIX_PATH=$CONDA_PREFIX \ -Deigenpy_DIR=$CONDA_PREFIX/lib/cmake/eigenpy
#build and install
make -j$(nproc) make install
See the full documentation for additional installation instructions for dexterous hand and demonstration data processing, kinematic retargeting, raytracer rendering, etc.
This codebase is released with the following preprint:
Zhao Mandi, Yifan Hou, Dieter Fox, Yashraj Narang, Ajay Mandlekar*, Shuran Song*. DexMachina: Functional Retargeting for Bimanual Dexterous Manipulation. arXiV, 2025.
*Equal Advising
If you find this codebase useful, please consider citing:
@misc{mandi2025dexmachinafunctionalretargetingbimanual,
title={DexMachina: Functional Retargeting for Bimanual Dexterous Manipulation},
author={Zhao Mandi and Yifan Hou and Dieter Fox and Yashraj Narang and Ajay Mandlekar and Shuran Song},
year={2025},
eprint={2505.24853},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2505.24853},
}
pip install --upgrade jax jaxlib==0.4.28+cuda12.cudnn89 -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
pip install -e .
conda install -c nvidia cudatoolkit=11.8 cudnn=8.9
pip install pytorch3d pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu121
