A comprehensive repository for testing and exploring GenAI Observability Tools, AI Frameworks, and Model Context Protocol (MCP) implementations.
This repository serves as a hands-on laboratory for experimenting with various generative AI tools, observability platforms, and integration patterns. It contains practical examples, tutorials, and implementations across multiple AI frameworks and monitoring solutions.
a2a/- Agent-to-agent communication examplesa2a_langgraph_mcp/- LangGraph with MCP integration for multi-agent systemsadk/- Agent Development Kit with MCP server implementationsswarm/- AI agent swarm implementationsoai-agent/- OpenAI agent examples with function calling
mcp/- Core MCP implementations including weather, email, and tutorial serversmcp-client/- MCP client implementationsmcp-go/- Go-based MCP server and client examplesoai-mcp/- OpenAI integration with MCP (filesystem and SSE examples)langchain-mcp/- LangChain integration with MCP serversfastmcp/- Fast MCP server implementations
langchain/- Comprehensive LangChain examples including callbacks, RAG, and AutoGPTlangserve/- LangServe server implementationslangflow/- LangFlow workflows and custom componentslangsmith/- LangSmith evaluation and monitoring exampleslangfuse/- LangFuse observability integration
otel/- OpenTelemetry instrumentation for various AI frameworks- OpenAI instrumentation
- LangChain instrumentation
- ChromaDB instrumentation
- WatsonX instrumentation
arize/- Arize AI monitoring integrationhelicone/- Helicone observability exampleslangtrace/- LangTrace monitoring implementationllmonitor/- LLM monitoring examplesnewrelic/- New Relic AI monitoringpromptlayer/- PromptLayer integration
aws/- AWS Bedrock examples and model implementationswatsonx/- IBM WatsonX examples with RAG implementationsopenai/- OpenAI API examples and assistantsdeepseek/- DeepSeek model implementationslitellm/- LiteLLM proxy examples
llmguard/- LLM security and guardrailseval/- Model evaluation frameworks and examples
milvus/- Milvus vector database examplesembedchain/- Embedchain implementations
graphql_instana/- GraphQL with Instana monitoringmy_flask_graphql_app/- Flask GraphQL applicationstreamlit-test/- Streamlit application examples
crew/- CrewAI multi-agent exampleshaystack/- Haystack RAG implementationsreact/- ReAct pattern implementationspython/- Python utilities and decorators
- Python 3.8+
- Node.js (for TypeScript/JavaScript examples)
- Go (for Go examples)
- Docker (for some services)
- Clone the repository:
git clone https://github.com/gyliu513/langX101.git
cd langX101- Set up Python environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate- Install dependencies for specific examples as needed (each directory may have its own requirements).
Check out the MCP examples in /mcp/ for setting up Model Context Protocol servers:
- Weather server implementation
- Email sending capabilities
- Tutorial and learning examples
Explore comprehensive observability setups:
- OpenTelemetry auto-instrumentation in
/otel/openai-auto/ - LangFuse integration in
/langfuse/ - Multi-tool monitoring comparisons
See advanced agent implementations:
- Multi-agent systems in
/a2a_langgraph_mcp/ - Agent orchestration patterns
- Function calling and tool usage
Find various RAG patterns:
- WatsonX RAG in
/watsonx/ - LangChain RAG examples
- Vector database integrations
This repository is primarily for testing and experimentation. Feel free to:
- Add new tool integrations
- Improve existing examples
- Share interesting use cases
- Report issues or suggestions
See LICENSE file for details.
genai observability mcp langchain openai agents rag monitoring opentelemetry ai-tools