🎉 Great News!
This repository comes with all GWAS data pre-loaded! No downloading, no waiting—just clone and run for instant access to all Manhattan plots.
Get up and running in just a few commands:
# 1) Install & initialize Git LFS (one-time per machine)
brew install git-lfs # macOS (or see https://git-lfs.github.com/)
git lfs install
# 2) Clone & fetch LFS-tracked .db files
git clone https://github.com/ciarareeve/STRXplorer.git
cd STRXplorer
git lfs pull
# 3) Install Python dependencies
pip install -r requirements.txt
# 4) Run the application
python STRXplorer.pySuccess! The app will start at http://localhost:5000 with full functionality.
This repository comes with everything you need:
STRXplorer/
├── STRXplorer.py ← Main Flask application
├── locus_data.db ← STR locus information
├── manhattan_data.db ← Pre-loaded GWAS data (LFS-stored)
├── manhattan_plot.py ← Plot generation utilities
├── locus_plots.py ← Additional plotting functions
├── Procfile ← EB deployment instruction
├── requirements.txt ← Python deps
├── .gitattributes ← Git LFS tracking rules
└── templates/
├── home.html
├── error.html
├── browse_traits.html
├── browse_loci.html
├── trait_overview.html
└── … other templates
Once running, you can immediately:
- Browse Traits: http://localhost:5000/browse_traits
- Browse STR Loci: http://localhost:5000/browse_loci
- Generate Manhattan Plots: Click any trait in the list to see its Manhattan plot
- Check Status: http://localhost:5000/database_status
# Example URLs
http://localhost:5000/
http://localhost:5000/browse_traits
http://localhost:5000/browse_loci
http://localhost:5000/trait_overview/mean_platelet_volume
http://localhost:5000/database_status-
Git LFS
- Install:
brew install git-lfsor see https://git-lfs.github.com/ - Initialize:
git lfs install
- Install:
-
Python ≥ 3.8
-
RAM: ≥ 2 GB (4 GB recommended)
-
Disk: ≥ 1 GB free
-
Web Browser: Chrome, Firefox, Safari, Edge
The manhattan_data.db contains:
- Multiple traits: Blood traits, anthropometric measures, and more
- Millions of variants: Genome-wide association data
- Statistical summaries: P-values, effect sizes, confidence intervals
- Optimized indexes: Fast querying for real-time plotting
Data Source: GWAS data from Margoliash et al. (2023) study on STR associations with complex traits.
-
Check Python version:
python --version
-
Install missing packages:
pip install -r requirements.txt
-
Ensure you’re in the project root directory
- Verify both
.dbfiles are present (locus_data.db,manhattan_data.db) - Check file permissions (should be world-readable)
- Run from the repo root
- Visit the Database Status page
- Refresh your browser or clear cache
-
Kill existing Flask processes:
pkill -f flask
-
Or run on a different port:
flask run --port 5001
We use Git Large File Storage to host the two big .db files:
-
Track them in your local clone:
git lfs track "*.db" git add .gitattributes git commit -m "Track .db files with Git LFS"
-
Clone & pull as shown in Step 1 to fetch the actual database blobs
Make sure .gitattributes contains:
*.db filter=lfs diff=lfs merge=lfs -textThat’s it — happy exploring!