Skip to content

cloudberry-contrib/aifun

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AIFun PostgreSQL Extension

An Apache Cloudberry/PostgreSQL extension that provides AI-powered functions that can be used with various LLM providers (OpenAI, Anthropic, Google Gemini, AWS Bedrock, any third-party providers that follow the OpenAI API specification, and locally hosted models using vLLM or SGLang).

Features

  • Multiple AI Providers: Support for OpenAI, Anthropic, Google Gemini, and AWS Bedrock
  • User Isolation: Each user manages their own API keys and providers
  • Row Level Security: PostgreSQL RLS ensures users can only access their own configurations
  • AI Functions: Ask questions, generate embeddings, classify text, extract structured data, summarize, translate, and more
  • Simple Setup: No complex encryption keys, users directly manage their API keys

Installation

Prerequisites

Before installing aifun, you need to install the following extensions:

  1. plpython3u - PL/Python3 procedural language
CREATE EXTENSION plpython3u;
  1. pgvector - Vector similarity search extension
git clone https://github.com/cloudberry-contrib/pgvector.git
cd pgvector
make && make install
CREATE EXTENSION vector;

Install aifun

make install
CREATE EXTENSION aifun;

Quick Start

1. Add Your AI Provider

-- Add OpenAI-compatible provider
SELECT
    aifun.add_provider(
        p_id => 'local_llm',
        p_type => 'openai',
        p_api_key => 'abc', 
        p_metadata => '{
            "endpoint": "http://10.14.10.1:8800/vllm/v1"
        }'::JSONB
    );

-- Add OpenAI provider
SELECT
    aifun.add_provider(
        p_id => 'local_llm',
        p_type => 'openai',
        p_api_key => 'api-key-openai'
    );

-- Add Anthropic provider  
SELECT
    aifun.add_provider(
        p_id => 'local_llm',
        p_type => 'anthropic',
        p_api_key => 'api-key-anthropic'
    );

-- Add Google Gemini provider
SELECT
    aifun.add_provider(
        p_id => 'local_llm',
        p_type => 'gemini',
        p_api_key => 'api-key-gemini'
    );

2. Use AI Functions

-- Ask a question
SELECT
    aifun.ask(
        provider => 'local_llm',
        model => 'zhipu/glm4-9b-chat',
        prompt => 'What is PostgreSQL?'
    );

-- Ask a question with context
SELECT
    aifun.ask(
        provider => 'local_llm',
        model => 'zhipu/glm4-9b-chat',
        prompt => 'What is the main advantage?',
        context => '{"context": "PostgreSQL is a relational database with ACID compliance and extensive extensibility."}'::jsonb
    );

-- Have a conversation with the AI
SELECT
    aifun.chat(
        provider => 'local_llm',
        model => 'zhipu/glm4-9b-chat',
        messages => '[
            {
                "role": "system",
                "content": "You are a helpful assistant."
            },
            {
                "role": "user",
                "content": "What is PostgreSQL?"
            },
            {
                "role": "assistant",
                "content": "PostgreSQL is an open-source relational database management system."
            },
            {
                "role": "user",
                "content": "What are its main features?"
            }
        ]'::jsonb
    );

-- Classify text
SELECT
    aifun.classify(
        provider => 'local_llm',
        model => 'zhipu/glm4-9b-chat',
        text_to_classify => 'I love this product!',
        labels => ARRAY['positive', 'negative', 'neutral']
    );

-- Extract structured data
SELECT
    aifun.extract(
        provider => 'local_llm',
        model => 'zhipu/glm4-9b-chat',
        text_to_parse => 'John is 30 years old and works as a developer', 
        json_schema => '{
            "name": "string",
            "age": "number",
            "job": "string"
        }'::JSONB
    );

-- Summarize text
SELECT
    aifun.summarize(
        provider => 'local_llm',
        model => 'zhipu/glm4-9b-chat',
        text_to_summarize => 'aifun is a PostgreSQL extension that provides AI-powered functions using various LLM providers (OpenAI, Anthropic, Google Gemini, AWS Bedrock). 
        It allows users to ask questions, generate embeddings, classify text, extract structured data, summarize, translate, and more.
        '
);

-- Translate text
SELECT
    aifun.translate(
        provider => 'local_llm',
        model => 'zhipu/glm4-9b-chat',
        text_to_translate => 'Hello world', 
        target_language => 'Spanish'
    );

-- Visual Q&A
SELECT
    aifun.visual_qa(
        provider => 'local_vlm',
        model => 'paddleocr-vl',
        image => '',
        question => 'What is the color of the shape?'
    );

-- Generate embeddings
SELECT
    aifun.embed(
        provider => 'local_embedding',
        model => 'jina', 
        text_to_embed => 'PostgreSQL is awesome'
    );

-- Multimodal embeddings with JSON content
SELECT
    aifun.multimodal_embed(
        provider => 'local_multimodal_embedding',
        model => 'bge', 
        content => '{"text": "A red square", "image": ""}'::jsonb
    );

-- Multimodal embeddings with text and image
SELECT
    aifun.multimodal_embed(
        provider => 'local_multimodal_embedding',
        model => 'bge',
        text => 'A red square',
        image => ''
    );

-- Parse PDF (Replace with actual base64-encoded PDF content)
SELECT aifun.parse_pdf(
    file_content_base64 => 'data:application/pdf;base64,JVBERi0xLjQKJdPr6eUQyAAAAAA=='
);

-- Parse DOCX (Replace with actual base64-encoded DOCX content)
SELECT aifun.parse_docx(
    file_content_base64 => 'data:application/vnd.openxmlformats-officedocument.wordprocessingml.document;base64,UEsDBBQACAgIAQwCAAQAAQAAAgICAgICAgAAAAAA=='
);

-- Parse PPTX (Replace with actual base64-encoded PPTX content)
SELECT aifun.parse_pptx(
    file_content_base64 => 'data:application/vnd.openxmlformats-officedocument.presentationml.presentation;base64,UEsDBBQACAgIAQwCAAQAAQAAAgICAgICAgAAAAAA=='
);

-- Parse PDF with VLM
SELECT
    aifun.parse_pdf_with_vlm(
        provider => 'local_vlm',
        model => 'paddleocr-vl',
        file_content_base64 => 'data:application/pdf;base64,JVBERi0xLjQKJdPr6eUQyAAAAAA=='
    );

-- Parse document with specified format (Replace with actual base64-encoded content)
SELECT aifun.parse_document(
    file_content_base64 => 'data:application/pdf;base64,JVBERi0xLjQKJdPr6eUQyAAAAAA==',
    file_extension => 'pdf'
);

-- Parse document with specified format (Replace with actual base64-encoded content)
SELECT aifun.parse_document(
    file_content_base64 => 'data:application/vnd.openxmlformats-officedocument.wordprocessingml.document;base64,UEsDBBQACAgIAQwCAAQAAQAAAgICAgICAgAAAAAA==',
    file_extension => 'docx'
);

-- Parse document with specified format (Replace with actual base64-encoded content)
SELECT aifun.parse_document(
    file_content_base64 => 'data:application/vnd.openxmlformats-officedocument.presentationml.presentation;base64,UEsDBBQACAgIAQwCAAQAAQAAAgICAgICAgAAAAAA==',
    file_extension => 'pptx'
);

3. Use AI Functions with Tables

CREATE TABLE IF NOT EXISTS test (
    id SERIAL PRIMARY KEY,
    content TEXT
);

-- Insert some test data
INSERT INTO test (content)
VALUES ('PostgreSQL is a powerful open-source database system.'),
       ('I love using Anthropic for AI-powered chatbots.'),
       ('AIFun is a PostgreSQL extension that provides AI-powered functions using various LL M providers.');

CREATE TABLE test_translation AS
SELECT
    id,
    aifun.translate(
        provider => 'local_llm',
        model => 'zhipu/glm4-9b-chat',
        text_to_translate => content, 
        target_language => 'zh'
    ) AS translation
FROM test;

CREATE TABLE test_embedding AS
SELECT
    id,
    aifun.embed(
        provider => 'local_llm',
        model => 'jina', 
        text_to_embed => content
    ) AS embedding
FROM test;

4. Use AI Functions with Directory Tables

-- Create a directory table
CREATE DIRECTORY TABLE test_dirt;

-- Parse PDF files
SELECT
    aifun.parse_pdf(
        file_content_bytea => content
    )  
FROM directory_table('test_dirt')
WHERE relative_path LIKE '%.pdf';

-- Parse DOCX files
SELECT
    aifun.parse_docx(
        file_content_bytea => content
    )  
FROM directory_table('test_dirt')
WHERE relative_path LIKE '%.docx';

-- Parse PPTX files
SELECT
    aifun.parse_pptx(
        file_content_bytea => content
    )  
FROM directory_table('test_dirt')
WHERE relative_path LIKE '%.pptx';

-- Parse all document types
SELECT
    aifun.parse_document(
        file_content_bytea => content,
        file_extension => SPLIT_PART(relative_path, '.', -1)
    )  
FROM directory_table('test_dirt');

4. Manage Your Providers

-- List your providers
SELECT * FROM aifun.my_providers;

-- Update API key
SELECT aifun.update_api_key('my_openai', 'new-api-key');

-- Remove provider
SELECT aifun.remove_provider('my_openai');

-- Check if provider exists
SELECT aifun.has_provider('my_openai');

Security Model

This extension uses Row Level Security (RLS) to ensure complete user isolation:

  • User Isolation: Each user can only access their own provider configurations
  • No Shared Secrets: No master encryption keys that could be compromised
  • Direct API Keys: Users manage their own API keys directly
  • PostgreSQL Security: Leverages PostgreSQL's built-in RLS for access control

How It Works

  1. Each provider configuration is tagged with the owner's username
  2. RLS policies ensure users can only see/modify their own data
  3. API keys are stored as plain text (user's own keys)
  4. No central encryption/decryption overhead

Supported Providers

Provider Type Models
OpenAI openai gpt-4, gpt-3.5-turbo, text-embedding-ada-002, or compatible models
Anthropic anthropic claude-3-sonnet, claude-3-haiku
Google Gemini gemini gemini-pro, gemini-pro-vision
AWS Bedrock aws_bedrock Various models via AWS Bedrock

Appendix - List of Functions

Schema Name Result data type Argument data types Type
aifun _get_provider_key text p_provider_id text func
aifun add_provider void p_id text, p_type text, p_api_key text, p_metadata jsonb DEFAULT NULL::jsonb func
aifun ask text provider text, model text, prompt text func
aifun ask text provider text, model text, prompt text, context text func
aifun chat text provider text, model text, messages jsonb func
aifun chunk text[] text text, chunk_size integer DEFAULT 1000, overlap integer DEFAULT 200 func
aifun classify text provider text, model text, text_to_classify text, labels text[] func
aifun embed vector provider text, model text, text_to_embed text func
aifun extract jsonb provider text, model text, text_to_parse text, json_schema jsonb func
aifun extract_keywords text[] provider text, model text, text text, num_keywords integer DEFAULT 5 func
aifun fix_grammar text provider text, model text, text text func
aifun has_provider boolean p_provider_id text func
aifun help text p_function_name text func
aifun list_all TABLE(function_name text, function_description text) func
aifun multimodal_embed vector provider text, model text, content jsonb func
aifun multimodal_embed vector provider text, model text, text text DEFAULT NULL::text, image bytea DEFAULT NULL::bytea func
aifun multimodal_embed vector provider text, model text, text text DEFAULT NULL::text, image text DEFAULT NULL::text func
aifun parse_document jsonb file_content_base64 text, file_extension text func
aifun parse_document jsonb file_content_bytea bytea, file_extension text func
aifun parse_docx jsonb file_content_base64 text func
aifun parse_docx jsonb file_content_bytea bytea func
aifun parse_pdf jsonb file_content_base64 text func
aifun parse_pdf jsonb file_content_bytea bytea func
aifun parse_pdf_with_vlm jsonb provider text, model text, file_content_base64 text, prompt text DEFAULT 'Extract all text and describe any images, charts, or visual elements in this PDF.'::text func
aifun parse_pdf_with_vlm jsonb provider text, model text, file_content_bytea bytea, prompt text DEFAULT 'Extract all text and describe any images, charts, or visual elements in this PDF.'::text func
aifun parse_pptx jsonb file_content_base64 text func
aifun parse_pptx jsonb file_content_bytea bytea func
aifun remove_provider void p_id text func
aifun rerank text[] provider text, model text, query text, documents text[] func
aifun similarity double precision provider text, model text, text1 text, text2 text func
aifun summarize text provider text, model text, text_to_summarize text, length integer DEFAULT 50 func
aifun translate text provider text, model text, text_to_translate text, target_language text func
aifun update_api_key void p_provider_id text, p_api_key text func
aifun visual_qa text provider text, model text, image bytea, question text func
aifun visual_qa text provider text, model text, image text, question text func

About

A Cloudberry/PostgreSQL extension that provides AI-powered functions

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published