Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_load_data/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_load_data/__pycache__/build.cpython-36.pyc
Binary file not shown.
12 changes: 11 additions & 1 deletion q01_load_data/build.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,14 @@
import pandas as pd
import random

# Write your code below
random.seed(7)

def load_data(path):
df = pd.read_table(path, sep=';')

return df





Binary file modified q01_load_data/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_load_data/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q02_data_split/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q02_data_split/__pycache__/build.cpython-36.pyc
Binary file not shown.
11 changes: 9 additions & 2 deletions q02_data_split/build.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,15 @@
# %load q02_data_split/build.py
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data
from sklearn.model_selection import train_test_split
import pandas as pd
df = load_data('data/student-mat.csv')

# Write your code below

def split_dataset(df):

X = df.iloc[:,:-1]
y = df['G3']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42, test_size=0.2)

return X_train, X_test, y_train, y_test


Binary file modified q02_data_split/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q02_data_split/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q03_data_encoding/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q03_data_encoding/__pycache__/build.cpython-36.pyc
Binary file not shown.
20 changes: 18 additions & 2 deletions q03_data_encoding/build.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,30 @@
# %load q03_data_encoding/build.py
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data
from greyatomlib.multivariate_regression_project.q02_data_split.build import split_dataset
from sklearn.preprocessing import LabelEncoder
import numpy as np
import pandas as pd
df = load_data('data/student-mat.csv')

x_train, x_test, y_train, y_test = split_dataset(df)

# Write your code below

def label_encode(x_train, x_test):
columnsToEncode = list(df.select_dtypes(include=['category','object']))
le = LabelEncoder()
X_transform = x_train.copy()
X_test_transform = x_test.copy()
for feature in columnsToEncode:
X_transform[feature] = le.fit_transform(X_transform[feature])
X_test_transform[feature] = le.fit_transform(X_test_transform[feature])

return X_transform, X_test_transform

label_encode(x_train, x_test)







Binary file modified q03_data_encoding/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q03_data_encoding/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q03_ohe_encoder/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q03_ohe_encoder/__pycache__/build.cpython-36.pyc
Binary file not shown.
19 changes: 14 additions & 5 deletions q03_ohe_encoder/build.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,28 @@
# %load q03_ohe_encoder/build.py
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data
from greyatomlib.multivariate_regression_project.q02_data_split.build import split_dataset
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
import numpy as np

df = load_data('data/student-mat.csv')

x_train, x_test, y_train, y_test = split_dataset(df)

category_index = [x for x in range(len(df.columns)) if df[df.columns[x]].dtype == 'object']


# Write your code below

def ohe_encode(x_train, x_test, ct = category_index):

X_transform = pd.get_dummies(x_train.iloc[ct], drop_first=True)
X_test_transform = pd.get_dummies(x_test.iloc[ct], drop_first=True)

return X_transform, X_test_transform

ohe_encode(x_train, x_test, category_index)









Binary file modified q03_ohe_encoder/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q03_ohe_encoder/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q04_data_visualisation/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q04_data_visualisation/__pycache__/build.cpython-36.pyc
Binary file not shown.
14 changes: 11 additions & 3 deletions q04_data_visualisation/build.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,24 @@
# -*- coding: utf-8 -*-
# %load q04_data_visualisation/build.py
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data
from greyatomlib.multivariate_regression_project.q02_data_split.build import split_dataset
from greyatomlib.multivariate_regression_project.q03_data_encoding.build import label_encode

import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
import seaborn as sns

data = load_data('data/student-mat.csv')
x_train, x_test, y_train, y_test = split_dataset(data)
x_train,x_test = label_encode(x_train,x_test)

# Write your code below
X_train = x_train.join(y_train)

def visualise_data(data, path):
plot = scatter_matrix(X_train)
plt.show();







Binary file modified q04_data_visualisation/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q04_data_visualisation/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q05_linear_regression_model/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q05_linear_regression_model/__pycache__/build.cpython-36.pyc
Binary file not shown.
15 changes: 12 additions & 3 deletions q05_linear_regression_model/build.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,24 @@
# %load q05_linear_regression_model/build.py
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data
from greyatomlib.multivariate_regression_project.q02_data_split.build import split_dataset

from sklearn.linear_model import LinearRegression
from greyatomlib.multivariate_regression_project.q03_data_encoding.build import label_encode

df = load_data('data/student-mat.csv')

x_train, x_test, y_train, y_test = split_dataset(df)

x_train, x_test = label_encode(x_train,x_test)


# Write your code below
def linear_regression(X=x_train,y=y_train):
model = LinearRegression()
lm = model.fit(X,y)

return lm







Binary file not shown.
Binary file modified q05_linear_regression_model/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q06_cross_validation/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q06_cross_validation/__pycache__/build.cpython-36.pyc
Binary file not shown.
10 changes: 9 additions & 1 deletion q06_cross_validation/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q06_cross_validation/build.py
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data
from greyatomlib.multivariate_regression_project.q02_data_split.build import split_dataset

Expand All @@ -17,5 +18,12 @@

model =linear_regression(x_train,y_train)

# Write your code below
def cross_validation_regressor(Model=model, X=x_test, y=y_train):
scores = cross_val_score(model, X, y)
r2score = scores.mean()

return r2score




Binary file modified q06_cross_validation/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q06_cross_validation/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q07_regression_pred/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q07_regression_pred/__pycache__/build.cpython-36.pyc
Binary file not shown.
14 changes: 13 additions & 1 deletion q07_regression_pred/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q07_regression_pred/build.py

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

Expand All @@ -18,5 +19,16 @@

val = cross_validation_regressor(model,x_train,y_train)

def regression_predictor(Model, X, y):
Model.fit(x_train,y_train)
y_pred = Model.predict(X)
mse = mean_squared_error(y, y_pred)
mae = mean_absolute_error(y, y_pred)
r2 = r2_score(y, y_pred)

return y_pred, mse, mae, r2





# Write your code below
Binary file modified q07_regression_pred/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q07_regression_pred/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q08_linear_model/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q08_linear_model/__pycache__/build.cpython-36.pyc
Binary file not shown.
12 changes: 11 additions & 1 deletion q08_linear_model/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q08_linear_model/build.py
import pandas as pd
import numpy as np
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data
Expand All @@ -15,6 +16,15 @@
val = cross_validation_regressor(model,x_train,y_train)
y_pred, mse, mae, r2 = regression_predictor(model, x_test, y_test)

# Write your code below
def linear_model(x_train, x_test, y_train, y_test):

G = model.fit(x_train, y_train)
y_pred = G.predict(x_test)
stat_table = pd.DataFrame([[val, mae, mse, r2]], columns=['cross_validation', 'mae', 'rmse', 'r2'])

return G, y_pred, stat_table





Binary file modified q08_linear_model/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q08_linear_model/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q09_advanced_model_q01_lasso/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q09_advanced_model_q01_lasso/__pycache__/build.cpython-36.pyc
Binary file not shown.
17 changes: 16 additions & 1 deletion q09_advanced_model_q01_lasso/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q09_advanced_model_q01_lasso/build.py
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data

from greyatomlib.multivariate_regression_project.q02_data_split.build import split_dataset
Expand All @@ -6,6 +7,7 @@

from greyatomlib.multivariate_regression_project.q07_regression_pred.build import regression_predictor
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
import pandas as pd

Expand All @@ -18,6 +20,19 @@

x_train,x_test = label_encode(x_train,x_test)

# Write your solution here
def lasso(x_train, x_test, y_train, y_test, alpha=0.1):

lasso_model = Lasso(alpha)
G = lasso_model.fit(x_train, y_train)
val = cross_validation_regressor(lasso_model,x_train,y_train)
y_pred, mse, mae, r2 = regression_predictor(lasso_model, x_test, y_test)
r2 = r2_score(y_test, y_pred)
stat_table = pd.DataFrame([[val, mae, r2, mse]], columns=['cross_validation', 'mae', 'r2', 'rmse'])

return G, y_pred, stat_table






Binary file not shown.
Binary file modified q09_advanced_model_q01_lasso/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q09_advanced_model_q02_ridge/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q09_advanced_model_q02_ridge/__pycache__/build.cpython-36.pyc
Binary file not shown.
16 changes: 13 additions & 3 deletions q09_advanced_model_q02_ridge/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q09_advanced_model_q02_ridge/build.py
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data

from greyatomlib.multivariate_regression_project.q02_data_split.build import split_dataset
Expand All @@ -18,8 +19,17 @@

x_train,x_test = label_encode(x_train,x_test)

# Write your code below


def ridge(x_train, x_test, y_train, y_test, alpha=0.1):

ridge_model = Ridge(alpha)
G = ridge_model.fit(x_train, y_train)
val = cross_validation_regressor(ridge_model,x_train,y_train)
y_pred, mse, mae, r2 = regression_predictor(ridge_model, x_test, y_test)
stat_table = pd.DataFrame([[val, mae, r2, mse]], columns=['cross_validation', 'mae', 'r2', 'rmse'])

return G, y_pred, stat_table





Binary file not shown.
Binary file modified q09_advanced_model_q02_ridge/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file modified q10_data_missing_values/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q10_data_missing_values/__pycache__/build.cpython-36.pyc
Binary file not shown.
15 changes: 14 additions & 1 deletion q10_data_missing_values/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q10_data_missing_values/build.py
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data
from greyatomlib.multivariate_regression_project.q02_data_split.build import split_dataset
from greyatomlib.multivariate_regression_project.q03_data_encoding.build import label_encode
Expand All @@ -8,6 +9,18 @@

x_train, x_test, y_train, y_test = split_dataset(df)
x_train,x_test = label_encode(x_train,x_test)
df.describe()

# Write your code below
def describe_df(data):
df = data
return df.describe(), x_train.apply(pd.value_counts)


describe_df(df)







Binary file modified q10_data_missing_values/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q10_data_missing_values/tests/__pycache__/test.cpython-36.pyc
Binary file not shown.
Binary file not shown.
Binary file not shown.
23 changes: 20 additions & 3 deletions q11_feature_selection_q01_plot_corr/build.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
# %load q11_feature_selection_q01_plot_corr/build.py

import matplotlib.pyplot as plt
from matplotlib.pyplot import yticks, xticks, subplots, set_cmap
from greyatomlib.multivariate_regression_project.q01_load_data.build import load_data

import seaborn as sns

from greyatomlib.multivariate_regression_project.q02_data_split.build import split_dataset

Expand All @@ -21,6 +22,22 @@

#Remember to concatenate training features and labels if you want to check that scatterplots which I would prefer.You are free to explore labels to labels, features to features ,etc scatterplots as you want by passing arguments
#============================================================================
#visualise_data(pd.concat([x_train,y_train],axis=1),"../images/data_image.png")
#visualise_data(pd.concat([x_train,y_train],axis=1),'../images/data_image.png')

def plot_corr(df, size=11):

df_train = pd.concat([x_train,y_train],axis=1)
corr = df_train.corr()
fig, ax = subplots(figsize=(size,size))
plt.set_cmap('YlOrRd')
ax.matshow(corr)
xticks(range(len(corr.columns)), corr.columns, rotation=90)
yticks(range(len(corr.columns)), corr.columns)
fig.savefig('./images/data_image.png')
return ax






# Write your solution here:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
20 changes: 16 additions & 4 deletions q11_feature_selection_q02_best_k_features/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q11_feature_selection_q02_best_k_features/build.py
# Default imports
from sklearn.feature_selection import SelectPercentile
from sklearn.feature_selection import f_regression
Expand All @@ -12,16 +13,27 @@
np.random.seed(9)

df = load_data('data/student-mat.csv')

x_train, x_test, y_train, y_test = split_dataset(df)

x_train,x_test = label_encode(x_train,x_test)
np.random.seed(9)

def percentile_k_features(x_train, y_train, k=50):

model = SelectPercentile(f_regression, percentile=k)
model.fit(x_train, y_train)
cols_list = model.get_support(indices=True)
cols_sort = [cols_list for _, cols_list in sorted(zip(model.scores_[cols_list],cols_list), reverse=True)]
top_k_predictors = x_train.iloc[:,cols_sort]

return list(top_k_predictors.columns.values)

percentile_k_features(x_train, y_train, k=50)

np.random.seed(9)
# Write your code below








Binary file not shown.
Binary file not shown.
Binary file modified q12_feature_selection/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q12_feature_selection/__pycache__/build.cpython-36.pyc
Binary file not shown.
Loading