Skip to content

Label-free Segmentation of Mitochondria for Simultaneous Morphological and Metabolic Studies

License

comp-imaging-sci/RedoxSegNet

Repository files navigation

RedoxSegNet

Official PyTorch implementation of RedoxSegNet described in the paper.

Kideog Bae, Muzaffer Özbey, Alexander Ho, Edita Aksamitiene, Kevin K Tan, Janet E Sorrells, Rishyashring R Iyer, Mark A. Anastasio, Stephen A. Boppart "Label-free Segmentation of Mitochondria for Simultaneous Morphological and Metabolic Studies"

Dependencies

python>=3.6.9
torch>=1.7.1
torchvision>=0.8.2
cuda=>11.2
ninja
python3.x-dev (apt install, x should match your python3 version, ex: 3.8)

Installation

  • Clone this repo:
git clone https://github.com/comp-imaging-sci/RedoxSegNet 
cd RedoxSegNet 

Dataset

You should structure your aligned dataset in the following way:

/dataset_path/
  │  ├── train
  |   - 1.tif
  |   - 2.tif
  |   - ...
  │  ├── val
  │  └── test

 

Train


python train_ddgan_translation_microscopy.py --data_dir /folder/path/for/data --image_size 256 --exp exp_RedoxSegNet --num_channels 2 --num_channels_dae 64 --ch_mult 1 1 2 2 4 4 --num_timesteps 4 --num_res_blocks 2 --batch_size 8 --num_epoch 200 --ngf 64 --embedding_type positional --use_ema --r1_gamma 2. --z_emb_dim 256 --lr_d 1e-4 --lr_g 2e-4 --lazy_reg 10  --num_process_per_node 1 --save_content --checkpoint_dir /checkpoints/runs --input_selection --input_channels 0 --out_channels 3  --local_rank 0

Argument descriptions

Argument Description
--data_dir Root directory path of the dataset folder.
--exp Name of the experiment, used for storing model checkpoints.
--image_size Size of image.
--num_channels Number of channels for generator input(summation of input and target channel)
--num_timesteps Number of diffusion steps.
--checkpoint_dir Directory where model checkpoints are saved.
--lr_d Initial learning rate for the optimizer of discriminator.
--lr_g Initial learning rate for the optimizer of generator.
--input_selection Indicate the selection of specific channels in source data.
--input_channels Channel index of source data, list with space (--input_channels 0 1 3).
--out_channels Channel index of target data, list with space (--out_channels 3 4).
--local_rank GPU selection.

Test


python test_ddgan_translation_inference.py --data_dir /folder/path/for/test/data --result_dir /folder/path/for/result/ --image_size 256 --num_channels 2 --num_channels_dae 64 --ch_mult 1 1 2 2 4 4 --num_timesteps 4 --num_res_blocks 2 --batch_size 8 --input_selection --input_channels 0 --num_target_channels 1 --checkpoint_model /checkpoints/runs/exp_RedoxSegNet/netG_100.pth

Argument descriptions

Argument Description
--data_dir Root directory path of the dataset folder.
--result_dir Directory where results are saved.
--image_size Size of image.
--num_channels Number of channels for generator input(summation of input and target channel)
--num_timesteps Number of diffusion steps.
--input_selection Indicate the selection of specific channels in source data.
--input_channels Channel index of source data, list with space (--input_channels 0 1 3).
--num_target_channels Number of channels in target image.

Acknowledgments

This code uses libraries from SynDiff repository.

About

Label-free Segmentation of Mitochondria for Simultaneous Morphological and Metabolic Studies

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published