Read structured metadata from images created with stable diffusion.
Prompts as well as some well-known generation parameters are provided as easily accessible properties (see Output).
Supports reading metadata from images generated with:
- Automatic1111's Stable Diffusion web UI
- ComfyUI *
- Fooocus
- InvokeAI
- NovelAI
* Custom ComfyUI nodes might parse incorrectly / with incomplete data.
pip install sd-parsers
From command line: python3 -m sd_parsers <filenames>
For a simple query, import ParserManager
from sd_parsers
and use its parse()
method to parse an image. (see examples)
from sd_parsers import ParserManager
parser_manager = ParserManager()
def main():
prompt_info = parser_manager.parse("image.png")
if prompt_info:
for prompt in prompt_info.prompts:
print(f"Prompt: {prompt.value}")
from PIL import Image
from sd_parsers import ParserManager
parser_manager = ParserManager()
def main():
with Image.open('image.png') as image:
prompt_info = parser_manager.parse(image)
from sd_parsers import ParserManager, Eagerness
parser_manager = ParserManager(eagerness=Eagerness.EAGER)
Eagerness
sets the metadata searching effort
The given eagerness level is the highest that will be considered.
i.e.: With Eagerness.DEFAULT
set, the ParserManager will try FAST
followed by DEFAULT
.
For now, this only has an effect on PNG images:
-
FAST: cut some corners to save some time
This only looks at Image.info.
-
DEFAULT: try to ensure all metadata is read
This will also look at Image.text, reading the whole image data to do so.
-
EAGER: include additional methods to try and retrieve metadata
Includes the stenographic alpha extractor, which will look for hidden metadata. (computationally expensive!)
from sd_parsers import ParserManager
from sd_parsers.data import PromptInfo, Sampler
from sd_parsers.parsers import Parser, AUTOMATIC1111Parser
# basic implementation of a parser class
# see parsers/_dummy_parser.py for a more detailed explanation
class DummyParser(Parser):
def parse(self, parameters):
return PromptInfo(
generator=self.generator,
samplers=[Sampler(name="dummy_sampler", parameters={})],
metadata={"some other": "metadata"},
raw_parameters=parameters,
)
# you can use multiple manager instances using different parsers
# caution: the order of parser entries matters!
# here, the DummyParser will ignore its input and always return a result,
# resulting in the AUTOMATIC1111 parser to never be used
parser_manager = ParserManager(managed_parsers=[DummyParser, AUTOMATIC1111Parser])
from sd_parsers import ParserManager
from sd_parsers.parsers import MANAGED_PARSERS, AUTOMATIC1111Parser
# remove all preset parser modules
MANAGED_PARSERS.clear()
# add the AUTOMATIC1111 parser as only parser module
MANAGED_PARSERS.extend([AUTOMATIC1111Parser])
# the default will still be overriden with managed_parsers=...
parser_manager = ParserManager()
from PIL.Image import Image
from sd_parsers import ParserManager, Eagerness
from sd_parsers.data import Generators
from sd_parsers.extractors import METADATA_EXTRACTORS
# define a custom extractor
def custom_extractor(i: Image, g: Generators):
return {"parameters": "custom extracted data\nSampler: UniPC, Steps: 15, CFG scale: 5"}
# remove all preset PNG extractors for the first (FAST) stage
METADATA_EXTRACTORS["PNG"][Eagerness.FAST].clear()
# add custom extractor
METADATA_EXTRACTORS["PNG"][Eagerness.FAST].append(custom_extractor)
parser_manager = ParserManager()
The parse()
method returns a PromptInfo
(source) object when suitable metadata is found.
Use
python3 -m sd_parsers <image.png>
to get an idea of the data parsed from an image file.
To get a result in JSON form, an approach as demonstrated in https://github.com/d3x-at/sd-parsers-web can be used.
PromptInfo
contains the following properties :
-
generator
: Specifies the image generator that may have been used for creating the image. -
full_prompt
: A full prompt, if present in the image metadata.Otherwise, a simple concatenation of all prompts found.
-
full_negative_prompt
: A full negative prompt if present in the image metadata.Otherwise, a simple concatenation of all negative prompts found.
-
prompts
: All prompts found in the parsed metadata. -
negative_prompts
: All negative prompts found in the parsed metadata. -
models
: Models used in the image generation process. -
samplers
: Samplers used in the image generation process.A Sampler contains the following properties specific to itself:
-
name
: The name of the sampler -
parameters
: Generation parameters, including cfg_scale, seed, steps and others. -
sampler_id
: A unique id of the sampler (if present in the metadata) -
model
: The model used by this sampler. -
prompts
: A list of positive prompts used by this sampler. -
negative_prompts
: A list of negative prompts used by this sampler.
-
-
metadata
: Additional metadata which could not be attributed to one of the former described.Highly dependent on the provided data structure of the respective image generator.
-
raw_parameters
: The unprocessed metadata entries as found in the parsed image (if present).
As i don't have the time and resources to keep up with all the available AI-based image generators out there, the scale and features of this library is depending greatly on your help.
If you find the sd-parsers library unable to read metadata from an image, feel free to open an issue.
See CONTRIBUTING.md, if you are willing to help with improving the library itself and/or to create/maintain an additional parser module.
Idea and motivation using AUTOMATIC1111's stable diffusion webui
Example workflows for testing the ComfyUI parser