Skip to content

dangvansam/livekit-plugins-tenvad

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LiveKit Plugins – TEN VAD

livekit-plugins-tenvad provides seamless integration of the TEN-framework/ten-vad voice activity detection (VAD) plugin into the LiveKit ecosystem.

This plugin enables real-time speech activity detection with low-latency inference, optimized for streaming, conversational AI, and livekit-agents integration.

✨ Features

  • 🔌 LiveKit plugin integration — plug-and-play support for LiveKit workflows
  • 🤖 Compatible with livekit-agents — extend agents with real-time VAD capabilities
  • 🎤 Accurate voice activity detection powered by TEN VAD
  • Low-latency inference (~0.17ms avg per frame) suitable for real-time use
  • 📊 Benchmark validated against Silero VAD (faster and more continuous speech detection)
  • 🛠️ Configurable & extensible within the LiveKit plugin system

🔧 Installation

# from PyPI
uv pip install livekit-plugins-tenvad

# from source
uv pip install git+https://github.com/dangvansam/livekit-plugins-tenvad.git

🔌 Usage

from livekit.plugins import tenvad

vad = tenvad.VAD.load(
    activation_threshold=0.5,
    min_speech_duration=0.1,
    min_silence_duration=0.3,
    max_buffered_speech=60,
    prefix_padding_duration=0.3
)

📊 Run Benchmark

git clone https://github.com/dangvansam/livekit-plugins-tenvad.git

cd livekit-plugins-tenvad

# install dependencies for testing
uv pip install .[test]

python test/benchmark.py -i test/sample.wav

Benchmark Results

Metric Silero VAD TEN VAD
Speech segments 95 41
Total speech 19.01s (13.0%) 114.98s (78.8%)
Avg inference time 0.22ms 0.17ms
Min inference time 0.18ms 0.14ms
Max inference time 9.76ms 0.78ms

Highlights:

  • TEN VAD is ~1.27× faster per frame
  • Detects longer continuous speech compared to Silero
  • Provides lower latency with fewer false segment splits

Visualizations

Long audio

TEN VAD Benchmark

Short audio

TEN VAD Benchmark

Citations

@misc{TEN VAD,
  author       = {TEN Team},
  title        = {TEN VAD: A Low-Latency, Lightweight and High-Performance Streaming Voice Activity Detector (VAD)},
  year         = {2025},
  publisher    = {GitHub},
  journal      = {GitHub repository},
  howpublished = {\url{https://github.com/TEN-framework/ten-vad.git}},
  email        = {[email protected]}
}

About

LiveKit plugin for TEN VAD: low-latency voice activity detection for real-time streaming, integrated with livekit-agents

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •