Framework and toolkit for interacting with Dateno LLM services.
To install the package, run the following command:
pip install .Or from GitHub:
pip install git+https://github.com/datenoio/datenollmPython >=3.10 required. Dependencies: gradio_client, logfire>=3.24.2
The main modules are located in src/datenollm/:
client.py— API client for Dateno LLM servicesdateno.py— Dateno search API core logicfile_utils.py— file operationsjupiter_nb.py— Jupyter/Colab notebook helpersserver.py— server logiccli/— command-line tools:test/— test data (context files)
The examples/ directory contains Jupyter notebooks (Google Colab compatible).
examples/dateno_llm_context_search.ipynb— An example research study using Dateno's context-switching LLM search agent.dateno-deep-research-workflow.ipynb— An example of Deep Research Workflow
This package provides the following command-line tools:
Generate structured queries for Dateno from user input using LLM.
Usage:
dateno-ask-llm <addr> <query> [--history <history_file>] [--prompt <prompt_file>] [--model <model_id>] [--max-tokens <max_tokens>] [--temperature <temperature>] [--top-p <top_p>]Download Gradio's flagged logs from the Gradio's app.
Usage:
dateno-get-logs <addr>Flag logs in the app.
Usage:
dateno-like <addr> <index> <like|dislike> <csv_path>Read and print Gradio's flagged logs from a CSV file.
Usage:
dateno-flagged-log <flagged_log_csv_file>Fix Jupyter notebooks from Google Colab to a format that displays properly on GitHub Gist. It does this by reading a JSON notebook file from stdin, removing the metadata.widgets section, and writing the modified JSON to stdout.
Usage:
dateno-collab2gist < input.ipynb > output.ipynbThis project is licensed under the Apache-2.0 License. See LICENSE for details.