Skip to content

Python package for exploratory data analysis providing statistical summaries, data quality checks, outlier detection and batch visualization functions. Supports Jupyter notebooks and terminal environments.

License

Notifications You must be signed in to change notification settings

dhaneshbb/insightfulpy

Repository files navigation

InsightfulPy

Python toolkit for exploratory data analysis with visualization and statistical functions.

PyPI version Python Version Version License Status

Overview

InsightfulPy simplifies exploratory data analysis through statistical summaries, data quality checks, and visualizations. Built with a modular architecture and constants-driven design, it works seamlessly in Jupyter notebooks, IPython, and terminal environments.

Key Features:

  • Statistical summaries for numerical and categorical data
  • Data quality checks (missing values, outliers, mixed types)
  • Batch visualization functions for large datasets
  • Individual column analysis with plots
  • Multi-dataset comparison tools
  • Environment detection (Jupyter and terminal)
  • Type hints and test coverage

Installation

PyPI

pip install insightfulpy

Source

git clone https://github.com/dhaneshbb/insightfulpy.git
cd insightfulpy
pip install .

Requirements: Python 3.8 or higher

Quick Start

import pandas as pd
import insightfulpy as ipy

# Load data
df = pd.read_csv('data.csv')

# Get help
ipy.help()         # Function overview
ipy.quick_start()  # Step-by-step guide

# Basic analysis
ipy.columns_info('Dataset', df)  # Structure
ipy.num_summary(df)               # Numerical stats
ipy.cat_summary(df)               # Categorical stats

# Data quality
ipy.missing_inf_values(df)  # Missing values
ipy.detect_outliers(df)     # Outliers

# Visualizations
ipy.show_missing(df)             # Missing patterns
ipy.kde_batches(df, batch_num=1) # Distributions

For complete workflow examples, see User Guide and Examples.

Visualization Gallery

Statistical Summary Dataset Structure Complete Analysis KDE Distributions Box Plots Box with Stats
QQ Plots Pie Charts Bar Charts Cross-tabulation Categorical Heatmaps Location Heatmaps
Box & Violin Plots Missing Values (Basic) Missing Values (Visual) Interconnected Outliers Dataset Linking Dataset Comparison

View gallery documentation →

Function Categories

# Helper Functions
# Quick utilities for navigation, exploration, and guidance
help(), list_all(), quick_start(), examples()

# Basic Analysis
# Core analytical operations on categorical & numerical data
analyze_data(), cat_summary(), num_summary(), columns_info(),
grouped_summary(), detect_outliers(), missing_inf_values()

# Visualization
# Visual insights with distribution & categorical plots
show_missing(), plot_boxplots(), kde_batches(),
box_plot_batches(), qq_plot_batches(),
cat_bar_batches(), cat_pie_chart_batches()

# Advanced Visualization
# Multi-variable and relational data visualization tools
num_vs_num_scatterplot_pair_batch(),
cat_vs_cat_pair_batch(),
num_vs_cat_box_violin_pair_batch()

# Statistical Functions
# Deeper statistical calculations and data profiling metrics
calc_stats(), calculate_skewness_kurtosis(),
iqr_trimmed_mean(), mad()

# Individual Analysis
# Focused analysis and plotting for specific column types
num_analysis_and_plot(), cat_analyze_and_plot()

# Dataset Comparison
# Compare datasets, detect key overlaps, and highlight deltas
compare_df_columns(), display_key_columns(),
interconnected_outliers(), linked_key(),
comp_cat_analysis(), comp_num_analysis()

See API Reference for detailed documentation.

Documentation

User Documentation:

Developer Documentation:

Complete Index:

Contributing

Contributions are welcome. See CONTRIBUTING.md for complete guidelines including development setup, testing requirements, code quality standards, and pull request process.

For development workflow, see Developer Guide. For dependencies, see pyproject.toml.

License

MIT License - see LICENSE file.

Third-party components are listed in NOTICE and THIRD_PARTY_LICENSES.txt.

Links


Version: 0.2.0 | Status: Beta | Python: 3.8-3.12

Copyright 2025 dhaneshbb | License: MIT | Homepage: https://github.com/dhaneshbb/insightfulpy

About

Python package for exploratory data analysis providing statistical summaries, data quality checks, outlier detection and batch visualization functions. Supports Jupyter notebooks and terminal environments.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Languages