@@ -9,15 +9,15 @@ g_computer = GComputation(x, t, y)
9
9
estimate_causal_effect! (g_computer)
10
10
g_inference = CausalELM. generate_null_distribution (g_computer, 1000 )
11
11
p1, stderr1 = CausalELM. p_value_and_std_err (g_inference, CausalELM. mean (g_inference))
12
- lb1, ub1 = CausalELM. confidence_interval (g_inference)
12
+ lb1, ub1 = CausalELM. confidence_interval (g_inference, g_computer . causal_effect )
13
13
p11, stderr11, lb11, ub11 = CausalELM. quantities_of_interest (g_computer, 100 )
14
14
summary1 = summarize (g_computer, n= 100 , inference= true )
15
15
16
16
dm = DoubleMachineLearning (x, t, y)
17
17
estimate_causal_effect! (dm)
18
18
dm_inference = CausalELM. generate_null_distribution (dm, 1000 )
19
19
p2, stderr2 = CausalELM. p_value_and_std_err (dm_inference, CausalELM. mean (dm_inference))
20
- lb2, ub2 = CausalELM. confidence_interval (dm_inference)
20
+ lb2, ub2 = CausalELM. confidence_interval (dm_inference, dm . causal_effect )
21
21
summary2 = summarize (dm, n= 100 )
22
22
23
23
# With a continuous treatment variable
@@ -27,7 +27,9 @@ dm_continuous_inference = CausalELM.generate_null_distribution(dm_continuous, 10
27
27
p3, stderr3 = CausalELM. p_value_and_std_err (
28
28
dm_continuous_inference, CausalELM. mean (dm_continuous_inference)
29
29
)
30
- lb3, ub3 = CausalELM. confidence_interval (dm_continuous_inference)
30
+ lb3, ub3 = CausalELM. confidence_interval (
31
+ dm_continuous_inference, dm_continuous. causal_effect
32
+ )
31
33
summary3 = summarize (dm_continuous, n= 100 )
32
34
33
35
x₀, y₀, x₁, y₁ = rand (1 : 100 , 100 , 5 ), rand (100 ), rand (10 , 5 ), rand (10 )
@@ -39,7 +41,9 @@ summary4_inference = summarize(its, n=100, inference=true)
39
41
# Null distributions for the mean and cummulative changes
40
42
its_inference1 = CausalELM. generate_null_distribution (its, 1000 , true )
41
43
its_inference2 = CausalELM. generate_null_distribution (its, 10 , false )
42
- lb4, ub4 = CausalELM. confidence_interval (its_inference1)
44
+ lb4, ub4 = CausalELM. confidence_interval (
45
+ its_inference1, CausalELM. mean (its. causal_effect)
46
+ )
43
47
p4, stderr4 = CausalELM. p_value_and_std_err (its_inference1, CausalELM. mean (its_inference1))
44
48
p44, stderr44, lb44, ub44 = CausalELM. quantities_of_interest (its, 100 , true )
45
49
@@ -50,7 +54,9 @@ summary5 = summarize(slearner, n=100)
50
54
tlearner = TLearner (x, t, y)
51
55
estimate_causal_effect! (tlearner)
52
56
tlearner_inference = CausalELM. generate_null_distribution (tlearner, 1000 )
53
- lb6, ub6 = CausalELM. confidence_interval (tlearner_inference)
57
+ lb6, ub6 = CausalELM. confidence_interval (
58
+ tlearner_inference, CausalELM. mean (tlearner. causal_effect)
59
+ )
54
60
p6, stderr6 = CausalELM. p_value_and_std_err (
55
61
tlearner_inference, CausalELM. mean (tlearner_inference)
56
62
)
@@ -60,7 +66,9 @@ summary6 = summarize(tlearner, n=100)
60
66
xlearner = XLearner (x, t, y)
61
67
estimate_causal_effect! (xlearner)
62
68
xlearner_inference = CausalELM. generate_null_distribution (xlearner, 1000 )
63
- lb7, ub7 = CausalELM. confidence_interval (xlearner_inference)
69
+ lb7, ub7 = CausalELM. confidence_interval (
70
+ xlearner_inference, CausalELM. mean (xlearner. causal_effect)
71
+ )
64
72
p7, stderr7 = CausalELM. p_value_and_std_err (
65
73
xlearner_inference, CausalELM. mean (xlearner_inference)
66
74
)
@@ -74,7 +82,9 @@ summary9 = summarize(rlearner, n=100)
74
82
dr_learner = DoublyRobustLearner (x, t, y)
75
83
estimate_causal_effect! (dr_learner)
76
84
dr_learner_inference = CausalELM. generate_null_distribution (dr_learner, 1000 )
77
- lb8, ub8 = CausalELM. confidence_interval (dr_learner_inference)
85
+ lb8, ub8 = CausalELM. confidence_interval (
86
+ dr_learner_inference, CausalELM. mean (dr_learner. causal_effect)
87
+ )
78
88
p8, stderr8 = CausalELM. p_value_and_std_err (
79
89
dr_learner_inference, CausalELM. mean (dr_learner_inference)
80
90
)
0 commit comments