Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,15 @@
with open("README.md", "r") as fh:
long_description = fh.read()

with open("src/NERDA/about.py") as f:
v = f.read()
for l in v.split("\n"):
if l.startswith("__version__"):
__version__ = l.split('"')[-2]

setuptools.setup(
name="NERDA",
version="1.0.0",
name="NERDA",
version=__version__,
author="Lars Kjeldgaard, Lukas Christian Nielsen",
author_email="[email protected]",
description="A Framework for Finetuning Transformers for Named-Entity Recognition",
Expand Down
3 changes: 2 additions & 1 deletion src/NERDA/__init__.py
Original file line number Diff line number Diff line change
@@ -1 +1,2 @@
import NERDA
import NERDA
from .about import __version__, __title__
2 changes: 2 additions & 0 deletions src/NERDA/about.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
__title__ = "NERDA"
__version__ = "1.0.1" # the ONLY source of version I
26 changes: 19 additions & 7 deletions src/NERDA/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,6 +163,7 @@ def __init__(self,
self.dataset_training = dataset_training
self.dataset_validation = dataset_validation
self.hyperparameters = hyperparameters
self.tokenizer_parameters = tokenizer_parameters
self.tag_outside = tag_outside
self.tag_scheme = tag_scheme
tag_complete = [tag_outside] + tag_scheme
Expand Down Expand Up @@ -214,7 +215,7 @@ def train(self) -> str:

return "Model trained successfully"

def load_network_from_file(self, model_path = "model.bin") -> str:
def load_network_from_file(self, model_path = "model.bin", tokenizer_path = "./tokenizer/") -> str:
"""Load Pretrained NERDA Network from file

Loads weights for a pretrained NERDA Network from file.
Expand All @@ -230,10 +231,17 @@ def load_network_from_file(self, model_path = "model.bin") -> str:
# TODO: change assert to Raise.
assert os.path.exists(model_path), "File does not exist. You can download network with download_network()"
self.network.load_state_dict(torch.load(model_path, map_location = torch.device(self.device)))

if(os.path.exists(tokenizer_path)):
self.transformer_tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
else:
self.transformer_tokenizer = AutoTokenizer.from_pretrained(
self.transformer, **self.tokenizer_parameters)

self.network.device = self.device
return f'Weights for network loaded from {model_path}'

def save_network(self, model_path:str = "model.bin") -> None:
def save_network(self, output_dir:str = "./output_dir") -> None:
"""Save Weights of NERDA Network

Saves weights for a fine-tuned NERDA Network to file.
Expand All @@ -245,8 +253,12 @@ def save_network(self, model_path:str = "model.bin") -> None:
Returns:
Nothing. Saves model to file as a side-effect.
"""
torch.save(self.network.state_dict(), model_path)
print(f"Network written to file {model_path}")
if(not os.path.exists(output_dir)):
os.makedirs(os.path.join(output_dir, "tokenizer"))

torch.save(self.network.state_dict(), os.path.join(output_dir, "model.bin"))
self.transformer_tokenizer.save_pretrained(os.path.join(output_dir, "tokenizer"))
print(f"Network written to file {output_dir}")

def quantize(self):
"""Apply dynamic quantization to increase performance.
Expand Down Expand Up @@ -387,18 +399,18 @@ def evaluate_performance(self, dataset: dict,
'F1-Score': [f1_micro[2]],
'Precision': [np.nan],
'Recall': [np.nan]})
df = df.append(f1_micro)
df = pd.concat([df, f1_micro])

# compute MACRO-averaged F1-scores and add to table.
f1_macro = compute_f1_scores(y_pred = tags_predicted,
y_true = dataset.get('tags'),
labels = self.tag_scheme,
average = 'macro')
f1_macro = pd.DataFrame({'Level' : ['AVG_MICRO'],
f1_macro = pd.DataFrame({'Level' : ['AVG_MACRO'],
'F1-Score': [f1_macro[2]],
'Precision': [np.nan],
'Recall': [np.nan]})
df = df.append(f1_macro)
df = pd.concat([df, f1_macro])

# compute and return accuracy if desired
if return_accuracy:
Expand Down
6 changes: 5 additions & 1 deletion src/NERDA/preprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,11 @@ def __getitem__(self, item):
# compute padding length
if self.pad_sequences:
padding_len = self.max_len - len(input_ids)
input_ids = input_ids + ([self.pad_token_id] * padding_len)
if self.pad_token_id == None:
input_ids = input_ids + ([0] * padding_len)
else:
input_ids = input_ids + ([self.pad_token_id] * padding_len)
#input_ids = input_ids + ([self.pad_token_id] * padding_len)
masks = masks + ([0] * padding_len)
offsets = offsets + ([0] * padding_len)
token_type_ids = token_type_ids + ([0] * padding_len)
Expand Down
5 changes: 2 additions & 3 deletions src/NERDA/training.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
import numpy as np
from .preprocessing import create_dataloader
from sklearn import preprocessing
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import get_linear_schedule_with_warmup
import random
import torch
from tqdm import tqdm
Expand Down Expand Up @@ -141,7 +140,7 @@ def train_model(network,

num_train_steps = int(len(dataset_training.get('sentences')) / train_batch_size * epochs)

optimizer = AdamW(optimizer_parameters, lr = learning_rate)
optimizer = torch.optim.AdamW(optimizer_parameters, lr=learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps = warmup_steps, num_training_steps = num_train_steps
)
Expand Down