Skip to content

Commit

Permalink
RAG using Gemini and Elasticsearch (#162)
Browse files Browse the repository at this point in the history
* Adding Question and answer example using Gemini, Elasticsearch and LangChain

* Adding Question and answer example using Gemini, Elasticsearch and LangChain

* Update notebooks/integrations/gemini/qa-langchain-gemini-elasticsearch.ipynb

Co-authored-by: Max Jakob <[email protected]>

* Update notebooks/integrations/gemini/qa-langchain-gemini-elasticsearch.ipynb

Co-authored-by: Max Jakob <[email protected]>

* Update notebooks/integrations/gemini/qa-langchain-gemini-elasticsearch.ipynb

Co-authored-by: Max Jakob <[email protected]>

* Update notebooks/integrations/gemini/qa-langchain-gemini-elasticsearch.ipynb

Co-authored-by: Max Jakob <[email protected]>

* Update notebooks/integrations/gemini/qa-langchain-gemini-elasticsearch.ipynb

Co-authored-by: Max Jakob <[email protected]>

* Update notebooks/integrations/gemini/qa-langchain-gemini-elasticsearch.ipynb

Co-authored-by: Max Jakob <[email protected]>

* Suggested changes

---------

Co-authored-by: Max Jakob <[email protected]>
  • Loading branch information
ashishtiwari1993 and maxjakob authored Jan 26, 2024
1 parent 7c890ec commit e4185bc
Showing 1 changed file with 286 additions and 0 deletions.
286 changes: 286 additions & 0 deletions notebooks/integrations/gemini/qa-langchain-gemini-elasticsearch.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "2a3143e8-3949-4ecc-905c-8333a43c9c87",
"metadata": {},
"source": [
"# Question Answering using Gemini, Langchain & Elasticsearch\n",
"\n",
"This tutorial demonstrates how to use the [Gemini API](https://ai.google.dev/docs) to create [embeddings](https://ai.google.dev/docs/embeddings_guide) and store them in Elasticsearch. We will learn how to connect Gemini to private data stored in Elasticsearch and build question/answer capabilities over it using [LangChian](https://python.langchain.com/docs/get_started/introduction)."
]
},
{
"cell_type": "markdown",
"id": "68c5e34d-28f9-4195-9f9c-2a8aec1effe6",
"metadata": {},
"source": [
"## setup\n",
"\n",
"* Elastic Credentials - Create an [Elastic Cloud deployment](https://www.elastic.co/search-labs/tutorials/install-elasticsearch/elastic-cloud) to get all Elastic credentials (`ELASTIC_CLOUD_ID`, `ELASTIC_API_KEY`).\n",
"\n",
"* `GOOGLE_API_KEY` - To use the Gemini API, you need to [create an API key in Google AI Studio](https://ai.google.dev/tutorials/setup)."
]
},
{
"cell_type": "markdown",
"id": "b8e9a58a-942f-4039-96c0-b276d5b8a97f",
"metadata": {},
"source": [
"## Install packages"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5c4781ec-06a5-48dd-963e-fb832b3f7ca2",
"metadata": {},
"outputs": [],
"source": [
"pip install -q -U google-generativeai elasticsearch langchain langchain_google_genai"
]
},
{
"cell_type": "markdown",
"id": "851db243-ca7d-4a7c-a93b-d22ab149a1bb",
"metadata": {},
"source": [
"## Import packages and credentials"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "26e7f569-c680-447b-9246-b5140ff47b6b",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
"from getpass import getpass\n",
"from urllib.request import urlopen\n",
"\n",
"from elasticsearch import Elasticsearch, helpers\n",
"from langchain.vectorstores import ElasticsearchStore\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain_google_genai import GoogleGenerativeAIEmbeddings\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough"
]
},
{
"cell_type": "markdown",
"id": "b2f68db5-21ac-47b0-941b-1d816b586e18",
"metadata": {},
"source": [
"## Get Credentials"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "543d27f4-2c53-4726-a324-716900d72338",
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"GOOGLE_API_KEY\"] = getpass(\"Google API Key :\")\n",
"ELASTIC_API_KEY = getpass(\"Elastic API Key :\")\n",
"ELASTIC_CLOUD_ID = getpass(\"Elastic Cloud ID :\")\n",
"elastic_index_name = \"gemini-qa\""
]
},
{
"cell_type": "markdown",
"id": "e8bd47b9-b946-46d1-ba02-adbda118415a",
"metadata": {},
"source": [
"## Add documents"
]
},
{
"cell_type": "markdown",
"id": "bd04e921-206e-4c8b-937a-277d2c5a02e6",
"metadata": {},
"source": [
"### Let's download the sample dataset and deserialize the document."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "44a5b79d-326e-4317-82a3-7918a11ff7b7",
"metadata": {},
"outputs": [],
"source": [
"url = \"https://raw.githubusercontent.com/ashishtiwari1993/langchain-elasticsearch-RAG/main/data.json\"\n",
"\n",
"response = urlopen(url)\n",
"\n",
"workplace_docs = json.loads(response.read())"
]
},
{
"cell_type": "markdown",
"id": "8591dce2-3fe6-4c87-b268-4694bb86e803",
"metadata": {},
"source": [
"### Split Documents into Passages"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3963b0db-80d5-4908-897c-bec6357adc0a",
"metadata": {},
"outputs": [],
"source": [
"metadata = []\n",
"content = []\n",
"\n",
"for doc in workplace_docs:\n",
" content.append(doc[\"content\"])\n",
" metadata.append({\n",
" \"name\": doc[\"name\"],\n",
" \"summary\": doc[\"summary\"],\n",
" \"rolePermissions\":doc[\"rolePermissions\"]\n",
" })\n",
"\n",
"text_splitter = CharacterTextSplitter(chunk_size=50, chunk_overlap=0)\n",
"docs = text_splitter.create_documents(content, metadatas=metadata)"
]
},
{
"cell_type": "markdown",
"id": "a066d5dc-dbc9-495f-934f-bfe96e0fdeec",
"metadata": {},
"source": [
"## Index Documents into Elasticsearch using Gemini Embeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "42ba370a-e4b4-4375-b71a-2aee7c40a330",
"metadata": {},
"outputs": [],
"source": [
"query_embedding = GoogleGenerativeAIEmbeddings(\n",
" model=\"models/embedding-001\", task_type=\"retrieval_document\"\n",
")\n",
"\n",
"es = ElasticsearchStore.from_documents(\n",
" docs,\n",
" es_cloud_id=ELASTIC_CLOUD_ID,\n",
" es_api_key=ELASTIC_API_KEY,\n",
" index_name=elastic_index_name,\n",
" embedding=query_embedding\n",
")"
]
},
{
"cell_type": "markdown",
"id": "dbdb2d55-3349-4e95-8087-68f927f0d864",
"metadata": {},
"source": [
"## Create a retriever using Elasticsearch"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "17920c1e-9228-42f5-893d-29b666d6f7b2",
"metadata": {},
"outputs": [],
"source": [
"query_embedding = GoogleGenerativeAIEmbeddings(\n",
" model=\"models/embedding-001\", task_type=\"retrieval_query\"\n",
")\n",
"\n",
"es = ElasticsearchStore(\n",
" es_cloud_id=ELASTIC_CLOUD_ID,\n",
" es_api_key=ELASTIC_API_KEY,\n",
" embedding=query_embedding,\n",
" index_name=elastic_index_name\n",
")\n",
"\n",
"retriever = es.as_retriever(search_kwargs={\"k\": 3})"
]
},
{
"cell_type": "markdown",
"id": "3647d005-d70e-4c3a-b784-052b21e9f143",
"metadata": {},
"source": [
"## Fromat Docs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "04ee4d3d-09fb-4a35-bc66-8a2951c402a8",
"metadata": {},
"outputs": [],
"source": [
"def format_docs(docs):\n",
" return \"\\n\\n\".join(doc.page_content for doc in docs)"
]
},
{
"cell_type": "markdown",
"id": "864afb6a-a671-434a-bd30-006c79ccda24",
"metadata": {},
"source": [
"## Create a Chain using Prompt Template + `gemini-pro` model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4818aef7-3535-494d-a5d4-16ef6d0581af",
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Answer the question based only on the following context:\\n\n",
"\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"\n",
"chain = (\n",
" {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()} \n",
" | prompt \n",
" | ChatGoogleGenerativeAI(model=\"gemini-pro\", temperature=0.7) \n",
" | StrOutputParser()\n",
")\n",
"\n",
"chain.invoke(\"what is our sales goals?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

0 comments on commit e4185bc

Please sign in to comment.