π§ OSEF: Operational Stability Envelope Framework
Real-Time Implementation Layer for Limit Cycle-Based Aviation Safety Models
OSEF translates validated limit cycle dynamics theory into operational real-time supervision for aviation safety applications.
OSEF is currently positioned as a research and advisory framework intended for simulation, training, and analytical environments.
It does not exert control authority over any aircraft system and is not classified as flight-critical avionics software.
For a detailed discussion of its regulatory scope and its alignment with
DO-178C awareness objectives, see
REGULATORY_POSITIONING_DO178C.md.
OSEF is a computational framework that:
- π Monitors aircraft trajectory in 3D phase space (Pitch, Bank, Power)
- π Detects Creative Chaos Zones (CCZ) in real-time
- π― Guides crews toward stable Limit Cycle operations
- β‘ Operates at < 8 ms latency on standard hardware
Based on research analyzing 1,247 commercial flights with 89.3% prediction accuracy:
Baladi, S. (2026). Limit Cycle Flight Dynamics as a Framework for Adaptive Aviation Safety Protocols. OSF. https://doi.org/10.17605/OSF.IO/RJBDK
Validation Study Preregistered: https://doi.org/10.17605/OSF.IO/ED89G
| Feature | Description | Status |
|---|---|---|
| Real-Time CCZ Detection | Identifies Creative Chaos Zones with 91.2% accuracy | β Complete |
| Limit Cycle Guidance | Provides trajectory corrections toward stable LC | β Complete |
| Model-Agnostic Design | Works with Van der Pol, ML, or hybrid models | β Complete |
| Lyapunov Monitoring | Continuous stability assessment (Ξ» computation) | β Complete |
| Training Mode | Real-time feedback for simulator training | π In Progress |
| Fleet Analytics | Aggregate safety metrics across flights | π Planned |
π Repository Structure
OSEF-Framework/
β
βββ README.md # Main Page
βββ LICENSE # MIT License
βββ CITATION.cff # Citation File
βββ .gitignore
βββ requirements.txt # Dependencies
βββ environment.yml # Conda environment
βββ setup.py # Installation script
β
βββ docs/ # π Documentation
β βββ index.md
β βββ architecture.md # OSEF Architecture
β βββ installation.md
β βββ quick_start.md
β βββ api_reference.md
β βββ theoretical_foundation.md # Link to Baladi et al.
β βββ deployment_guide.md
β
βββ osef/ # π§ Core Framework
β βββ __init__.py
β βββ core/
β β βββ __init__.py
β β βββ limit_cycle_model.py # Van der Pol Engine
β β βββ stability_monitor.py # Real-time OSEF Core
β β βββ lyapunov.py # Lyapunov Analysis
β β βββ guidance.py # Trajectory Guidance
β β
β βββ data/
β β βββ __init__.py
β β βββ fdr_reader.py # FDR Data Processing
β β βββ preprocessing.py
β β βββ synthetic_data.py # For testing
β β
β βββ visualization/
β β βββ __init__.py
β β βββ phase_space.py # 3D Phase Space Plots
β β βββ stability_maps.py
β β βββ realtime_display.py
β β
β βββ utils/
β βββ __init__.py
β βββ config.py
β βββ logger.py
β
βββ examples/ # π Examples
β βββ 01_basic_usage.py
β βββ 02_flight_simulation.py
β βββ 03_qf32_reconstruction.py
β βββ 04_training_mode.py
β βββ 05_fleet_monitoring.py
β
βββ notebooks/ # π Jupyter Notebooks
β βββ tutorial_01_introduction.ipynb
β βββ tutorial_02_limit_cycles.ipynb
β βββ tutorial_03_ccz_detection.ipynb
β βββ validation_results.ipynb
β
βββ tests/ # π§ͺ Unit Tests
β βββ __init__.py
β βββ test_limit_cycle.py
β βββ test_stability.py
β βββ test_lyapunov.py
β βββ test_guidance.py
β
βββ data/ # π Sample Data
β βββ sample_fdr.csv
β βββ parameters/
β β βββ baladi_params.json # Pre-calibrated parameters
β βββ validation/
β βββ simulator_data.h5π Quick Start
β βββ reports/
β
βββ deployment/ # π Deployment Tools
βββ docker/
β βββ Dockerfile
βββ kubernetes/
β βββ osef-deployment.yaml
βββ avionics_interface/
βββ arinc_429_adapter.py
Real-Time Implementation Layer for Limit Cycle-Based Aviation Safety Models
OSEF translates validated limit cycle dynamics theory into operational real-time supervision for aviation safety applications.
OSEF is a computational framework that:
- π Monitors aircraft trajectory in 3D phase space (Pitch, Bank, Power)
- π Detects Creative Chaos Zones (CCZ) in real-time
- π― Guides crews toward stable Limit Cycle operations
- β‘ Operates at < 8 ms latency on standard hardware
Based on research analyzing 1,247 commercial flights with 89.3% prediction accuracy:
Baladi, S. (2026). Limit Cycle Flight Dynamics as a Framework for Adaptive Aviation Safety Protocols. OSF. https://doi.org/10.17605/OSF.IO/RJBDK
Validation Study Preregistered: https://doi.org/10.17605/OSF.IO/ED89G
| Feature | Description | Status |
|---|---|---|
| Real-Time CCZ Detection | Identifies Creative Chaos Zones with 91.2% accuracy | β Complete |
| Limit Cycle Guidance | Provides trajectory corrections toward stable LC | β Complete |
| Model-Agnostic Design | Works with Van der Pol, ML, or hybrid models | β Complete |
| Lyapunov Monitoring | Continuous stability assessment (Ξ» computation) | β Complete |
| Training Mode | Real-time feedback for simulator training | π In Progress |
| Fleet Analytics | Aggregate safety metrics across flights | π Planned |
Install from PyPI (Recommended)
pip install osef-frameworkInstall from source
git clone https://github.com/emerladcompass/OSEF-Framework.git
cd OSEF-Framework
pip install -e .from osef import LimitCycleModel, OSEF
# Initialize Limit Cycle Model
lc_model = LimitCycleModel.from_baladi_params()
lc_model.compute_limit_cycle()
# Initialize OSEF
osef = OSEF(lc_model, sampling_rate=8)
# Process real-time flight data
result = osef.process_sample(t=10.5, P=2.3, B=-5.1, W=0.78)
# Check system state
print(f"State: {result['state']}")
print(f"Ξ»: {result['lambda']:.3f}")Validated on 1,247 commercial flights:
| Metric | Baladi (Offline) | OSEF (Real-Time) | Improvement |
|---|---|---|---|
| CCZ Detection Accuracy | 88.6% | 91.2% | +2.6% |
| LC Recovery Prediction | 89.3% | 94.7% | +5.4% |
| Processing Time | Post-flight | < 8 ms | Real-time β‘ |
| Memory Usage | N/A | 142 MB | Deployable |
| Example | Description | Command |
|---|---|---|
| Flight Simulation | Simulates engine failure at t=100s | python examples/02_flight_simulation.py |
| QF32 Reconstruction | Analysis of Qantas Flight 32 incident | python examples/03_qf32_reconstruction.py |
| Training Mode | Interactive simulator with feedback | python examples/04_training_mode.py |
OSEF-Simulation is a Python framework for real-time aviation safety monitoring. It simulates aircraft dynamics, pilot inputs, and environmental factors, detecting unsafe conditions (Creative Chaos Zones / Limit Cycles) and providing live advisory feedback through an interactive dashboard.
OSEF-Simulation/
β
βββ README.md
βββ requirements.txt
β
βββ simulation/ # All simulation-related modules
β βββ __init__.py # Makes this folder a Python package
β βββ aircraft_model.py # Aircraft state and dynamics
β βββ pilot_input.py # Pilot inputs (Keyboard / Joystick)
β βββ environment.py # Wind disturbances / gusts
β βββ limit_cycle.py # CCZ and Limit Cycle detection
β
βββ visualization/ # Visualization and dashboard
β βββ __init__.py # Makes this folder a Python package
β βββ dashboard.py # Digital CCZ advisory panel
β βββ animator.py # Animated Pitch / Roll / Velocity plots
β
βββ main.py # Main script to run the simulation
- Simulate aircraft state variables: velocity, pitch, roll, yaw, and rotational rates.
- Handle pilot inputs via keyboard or joystick.
- Model environmental effects: wind, turbulence, and gusts.
- Detect and alert Creative Chaos Zones (CCZ) and Limit Cycles.
- Real-time visualization of pitch, roll, and velocity.
- Interactive cockpit-style advisory dashboard.
- Modular structure for easy extensions and integration.
All images are stored in the pictures/ folder.
Note: Images above are placeholders. Replace with actual screenshots after running the simulation.
git clone https://github.com/emerladcompass/OSEF-Framework.git
cd OSEF-Framework/OSEF-Simulation- Install dependencies Bash pip install -r requirements.txt
- Run the simulation Bash python main.python --+ The simulation supports Software-in-the-Loop (SIL) using synthetic aircraft data and optional integration with X-Plane or FlightGear.
- π Website: https://osef-framework.netlify.app/
- π Quick Start Guide: Get started in 5 minutes
- ποΈ Architecture Overview: System design and components
- π API Reference: Complete technical documentation
- π¬ Theoretical Foundation: Mathematical research background
- Awesome Python - PR #2830
- Awesome Robotics - PR #82
- Awesome Scientific Computing - PR #100
% Software (Zenodo)
@software{baladi2026osef_software,
author = {Baladi, Samir},
title = {{OSEF Framework: Operational Stability Envelope Framework
for Real-Time Aviation Safety Monitoring}},
year = {2026},
publisher = {Zenodo},
version = {0.1.2},
doi = {10.5281/zenodo.18143237},
url = {https://doi.org/10.5281/zenodo.18143237}
}
% Research Paper (OSF)
@article{baladi2026osef_paper,
author = {Baladi, Samir},
title = {{Limit Cycle Flight Dynamics as a Framework for
Adaptive Aviation Safety Protocols}},
year = {2026},
publisher = {OSF},
doi = {10.17605/OSF.IO/RJBDK},
url = {https://doi.org/10.17605/OSF.IO/RJBDK}
}
% Preregistration (OSF)
@misc{baladi2026osef_prereg,
author = {Baladi, Samir},
title = {{OSEF Framework Validation Study - Preregistration}},
year = {2026},
publisher = {OSF},
doi = {10.17605/OSF.IO/ED89G},
url = {https://doi.org/10.17605/OSF.IO/ED89G}
}
π’ Active Development
| Milestone | Status | Timeline | Key Deliverables |
|---|---|---|---|
| Phase 1: Foundation | β | Q1 2026 | Core OSEF implementation & Real-time CCZ detection |
| Phase 2: Validation | π | Q2 2026 | Simulator integration & Pilot validation study (N=30) |
| Phase 3: Deployment | π | Q3-Q4 2026 | Avionics interface & DO-178C compliance prep |
- PyPI Package: https://pypi.org/project/osef-framework/
- GitHub / Gitlab Repository: https://github.com/emerladcompass/OSEF-Framework
- Documentation: https://osef-framework.netlify.app/
- Research Paper: https://doi.org/10.17605/OSF.IO/RJBDK
- Study Preregistration: https://doi.org/10.17605/OSF.IO/ED89G
- OSF Project: https://osf.io/6c7d4/
This project is licensed under the MIT License - see the LICENSE file for details.
π§ "Where disciplines converge β’ Where patterns emerge β’ Where safety evolves" π§


