jax2onnx 0.12.0 - Layout controls, opset 23 defaults, and regression hardening
-
NCHW boundary layout support:
Addedinputs_as_nchw/outputs_as_nchwforto_onnx(...)andallclose(...), with layout-optimization docs/tests and transpose-cleanup improvements for Conv-heavy graphs. -
Depth-to-space and residual-stack coverage:
Addeddm_pix.depth_to_spacelowering to ONNXDepthToSpaceand expanded NNX regression examples/tests for depth-to-space and nested residual groups. -
Primitive and IR improvements:
Addedjax.numpy.meanlowering toReduceMean; fixed symbolicdim_as_valuehandling; and stabilized dynamic reshape folding used by CLIP/MaxText exports. -
ONNX opset 23 path for attention models:
Added opset >= 23 RotaryEmbedding/Attention support and made opset 23 the default into_onnx(...). -
Gather/scatter regression fixes:
Fixed scatter-add broadcast window handling and issue #52 lowering edge cases; fixed gather indexing andvmap(dynamic_slice_in_dim)gather lowering regressions. -
Compatibility refresh:
Expanded tested Python versions to 3.11-3.14 and updated runtime dependency floors (onnx,onnxruntime,dm-pix) for the new paths.