An interactive Streamlit app to explore, profile, manipulate and visualize WorldPulse datasets. Built in collaboration with the WeSkill volunteering program.
- Home: Overview and instructions.
- Data Upload: Upload CSV/Excel files and preview with an interactive grid.
- Manipulation: Launch a D-Tale session for ad-hoc data exploration.
- Profiling: Generate an automated Pandas Profiling report.
- Visualization: Create custom charts with PyGWalker and AutoViz.
- AutoML: Train and compare classification/regression models via PyCaret.
- Preprocessing: One-hot, target encoding, normalization, etc.
# 1. Clone the repo
git clone https://github.com/equinix-labs/worldpulse-data-explorer.git
cd worldpulse-data-explorer
# 2. (Optional) Create & activate a virtual environment
python3 -m venv .venv
source .venv/bin/activate
# 3. Install dependencies
# If using Python 3.13+, use ignore-requires-python to bypass unmet python_requires constraints
pip install --ignore-requires-python -r requirements.txt
# 4. Run the app
streamlit run WorldPulseMain.py
The app will be accessible at http://localhost:8501
in your web browser.
worldpulse-data-explorer/
├── WorldPulseMain.py # App entrypoint
├── home.py # Home page
├── data_upload.py # File upload & AgGrid preview
├── manipulation.py # D-Tale integration
├── profiling.py # Pandas Profiling
├── visualization.py # PyGWalker charts
├── autoviz.py # AutoViz charts
├── encoding.py # Encoding utilities
├── preprocessing.py # Scaling / normalization
├── regression_pycaret.py # Model training UI
├── requirements.txt
└── README.md