Self-supervised learning on HEP events.
A small testing dataset (about 20GB) can be downloaded from zenodo:
./scripts/download_data.sh
├── README.md
├── configs # Config files (models and training hyperparameters)
│ └── model1.yaml
├── models # Trained and exported models.
│
├── notebooks # Jupyter notebooks.
│
├── requirements.txt # The requirements file for reproducing the environment.
└── src # Source code for use in this project.
├── __init__.py # Makes src a Python module.
│
├── datasets # Data engineering scripts.
│ ├── dataset1.py
│ ├── dataset2.py
│ └── utils.py.py
│
├── models # ML model engineering (a folder/file for each model).
│ ├── model1.py
│ ├── model2.py
│ └── losses.py
│
└── scripts # Various scripts for e.g., GPU-cluster training etc.
├── HPC1
│ ├── train_4GPUs.sh
│ └── train_8GPUs.sh
└── HPC2
├── train_4GPUs.sh
└── train_8GPUs.sh
# Data is assumed to be located in directories outside this repo
├── data # Data (not in git)
├── dataset1
│ ├── raw
│ └── processed
└── dataset2
├── raw
└── processed