File tree Expand file tree Collapse file tree 18 files changed +445
-174
lines changed Expand file tree Collapse file tree 18 files changed +445
-174
lines changed Original file line number Diff line number Diff line change 1+ # https://hydra.cc/docs/configure_hydra/intro/
2+
3+ # enable color logging by setting to 'colorlog' -- if set to 'none', logging will not
4+ # be modified by hydra (i.e. then the logging config from the code will be used)
5+ defaults :
6+ - override hydra_logging : none
7+ - override job_logging : none
8+
9+
10+ # output directory, generated dynamically on each run
11+ run :
12+ dir : ./outputs/${project_name}/runs/${now:%Y-%m-%d}_${now:%H-%M-%S}_${task_name}_${run_name}
13+
14+ # if you want to disable automatic output directory creation, set run.dir to "."
15+ # run:
16+ # dir: .
17+ # output_subdir: null # if set, will be appended to run.dir. Default is .hydra
Original file line number Diff line number Diff line change 1+ version : 1
2+ formatters :
3+ simple :
4+ format : ' %(asctime)s - %(levelname)s - %(message)s'
5+ colorlog :
6+ class : colorlog.ColoredFormatter
7+ format : ' [%(cyan)s%(asctime)s%(reset)s][%(blue)s%(name)s%(reset)s][%(log_color)s%(levelname)s%(reset)s] - %(message)s'
8+ datefmt : ' %Y-%m-%d %H:%M:%S'
9+ log_colors :
10+ DEBUG : ' cyan'
11+ INFO : ' green'
12+ WARNING : ' yellow'
13+ ERROR : ' red'
14+ CRITICAL : ' bold_red'
15+ handlers :
16+ console :
17+ class : logging.StreamHandler
18+ formatter : colorlog
19+ stream : ext://sys.stdout
20+ level : INFO
21+ root :
22+ handlers : [console]
23+
24+ disable_existing_loggers : false
Original file line number Diff line number Diff line change 1+ defaults :
2+ - _self_
3+ - hydra : default
4+ - model : vqvae
5+ - data : cldhits
6+ - trainer : ddp
7+ - ml_logger : wandb # set logger here or use command line (e.g. `python train.py logger=tensorboard`)
8+ - paths : default
9+
10+ project_name : dev
11+ run_name : main
12+ task_name : train
Original file line number Diff line number Diff line change 1+ wandb :
2+ # _target_: lightning.pytorch.loggers.wandb.WandbLogger
3+ # name: "" # name of the run (normally generated by wandb)
4+ save_dir : " ${paths.output_dir}"
5+ offline : False
6+ id : null # pass correct id to resume experiment!
7+ anonymous : null # enable anonymous logging
8+ project : " deep-learning"
9+ log_model : False # upload lightning ckpts
10+ prefix : " " # a string to put at the beginning of metric keys
11+ # entity: "" # set to name of your wandb team
12+ group : " "
13+ tags : []
14+ job_type : " "
Original file line number Diff line number Diff line change 1+ # _target_: src.models.vqvae.VQVAELightning
2+
3+ model_name : VQVAELightning
4+
5+ model_type : " VQVAENormFormer"
6+
7+ model_kwargs :
8+ input_dim : 3
9+ hidden_dim : 128
10+ latent_dim : 16
11+ num_blocks : 3
12+ num_heads : 8
13+ alpha : 5
14+ vq_kwargs :
15+ num_codes : 2048
16+ beta : 0.9
17+ kmeans_init : true
18+ norm : null
19+ cb_norm : null
20+ affine_lr : 0.0
21+ sync_nu : 2
22+ replace_freq : 20
23+ dim : -1
24+
25+ optimizer :
26+ _target_ : torch.optim.AdamW
27+ _partial_ : true
28+ lr : 0.001
29+ # weight_decay: 0.05
30+
31+ optimizer_kwargs :
32+ lr : 0.001,
33+ weight_decay : float = 0.001,
34+ amsgrad : bool = False,
35+
36+ scheduler :
37+ _target_ : torch.optim.lr_scheduler.ConstantLR
38+ _partial_ : true
39+
40+ # using the method listed in the paper https://arxiv.org/abs/1902.08570, but with other parameters
41+ # scheduler:
42+ # _target_: src.schedulers.lr_scheduler.OneCycleCooldown
43+ # _partial_: true
44+ # warmup: 4
45+ # cooldown: 10
46+ # cooldown_final: 10
47+ # max_lr: 0.0002
48+ # initial_lr: 0.00003
49+ # final_lr: 0.00002
50+ # max_iters: 200
Original file line number Diff line number Diff line change 1+ # path to root directory
2+ # this requires PROJECT_ROOT environment variable to exist
3+ # you can replace it with "." if you want the root to be the current working directory
4+ # root_dir: ${oc.env:PROJECT_ROOT}
5+
6+ # path to data directory
7+ # data_dir: ${oc.env:DATA_DIR}
8+
9+ # path to logging directory
10+ # log_dir: ${oc.env:LOG_DIR}
11+
12+ # path to output directory, created dynamically by hydra
13+ # path generation pattern is specified in `configs/hydra/default.yaml`
14+ # use it to store all files generated during the run, like ckpts and metrics
15+ output_dir : ${hydra:run.dir}
16+
17+ # path to working directory
18+ work_dir : ${hydra:runtime.cwd}
Original file line number Diff line number Diff line change 1+ defaults :
2+ - default.yaml
3+
4+ accelerator : cpu
5+ devices : 1
Original file line number Diff line number Diff line change 1+ # _target_: lightning.Trainer
2+
3+ defaults :
4+ - default
5+
6+ accelerator : gpu
7+ strategy : ddp
8+ devices : 4
9+
10+ # mixed precision
11+ precision : 16-mixed
12+
13+ # set True to to ensure deterministic results
14+ # makes training slower but gives more reproducibility than just setting seeds
15+ deterministic : False
16+ sync_batchnorm : True
Original file line number Diff line number Diff line change 1+ # _target_: lightning.Trainer # Instantiating with hydra.utils.instantiate may pose a security risk
2+
3+ min_epochs : 1 # prevents early stopping
4+ max_epochs : 10
5+
6+ accelerator : cpu
7+ devices : 1
8+ enable_progress_bar : False
9+
10+ # perform a validation loop every N training epochs
11+ check_val_every_n_epoch : 1
12+
13+ # set True to to ensure deterministic results
14+ # makes training slower but gives more reproducibility than just setting seeds
15+ deterministic : False
16+
17+ # note needed for single device or cpu training
18+ sync_batchnorm : False
Original file line number Diff line number Diff line change @@ -21,3 +21,8 @@ torch==2.5.1
2121torchvision == 0.20.1
2222torchaudio == 2.5.1
2323nbdev
24+ lightning
25+ tensorboardX
26+ hydra-core
27+ hydra-colorlog
28+ omegaconf
You can’t perform that action at this time.
0 commit comments