Skip to content

fedecarroz/fml_codes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Foundation of Machine Learning codes

Folder structure and description


# CLUSTERING# Clustering-related classes built from scratch.
├── clustering
│   # KMeans class
│   ├── kmeans.py # KMeans class
│   └── kmedoids.py # KMedoids class
│   
│   # DATASETS
├── datasets
│   ├── advertising.csv
│   ├── cancer.csv
│   ├── cardio.csv
│   ├── glass.csv
│   ├── houses.csv
│   ├── insurance.csv
│   ├── petrol_consumption.csv
│   ├── student_scores.csv
│   ├── transfusion.csv
│   └── wine.csv
│   
│   # ESTIMATORS# sci-kit learn "equivalent" estimators built from scratch.# # FBGD => Full-Batch Gradient Descent# SGD => Stochatsic Gradient Descent# MBGD => Mini-Batch Gradient Descent# OLS => Ordinary Least Squares (Normal Equation method)# clf => classification task# reg => regression task
├── estimators
│   │   # linear regression classes
│   ├── linear_regression 
│   │   ├── fbgd_linear_regression.py 
│   │   ├── mbgd_linear_regression.py
│   │   ├── ols_linear_regression.py
│   │   └── sgd_linear_regression.py
│   │   # logistic regression classes
│   ├── logistic_regression
│   │   ├── fbgd_logistic_regression.py
│   │   ├── mbgd_logistic_regression.py
│   │   └── sgd_logistic_regression.py
│   │   # neural netowrk classes
│   └── neural_network 
│       ├── fbgd_clf_neural_network.py
│       └── fbgd_reg_neural_network.py
│   
│   # HELPERS# other helpful classes or methods built from scratch.
├── helpers
│   ├── grid_search_cv.py
│   ├── normalization.py
│   └── sigmoid.py
│   
│   # MAIN# Main files in which supervised and unsupervised learning tasks are performed.# Classes built from scratch and sci-kit library has been adopted.
├── main
│   ├── anomaly.py
│   ├── clustering.py
│   ├── grid_search_log_reg.py
│   ├── houses.py
│   ├── nn_clf_main.py
│   ├── nn_reg_main.py
│   ├── pca.py
│   ├── petrol_consumption.py
│   └── student_scores.py
│   
│   # METRICS# Model evaluation utilities built from scratch.
└── metrics
    ├── classification_metrics.py
    ├── metrics_evaluation.py
    ├── regression_metrics.py
    └── roc.py

Credits


Thanks to Federico Carrozzino, Giovanni Silvestri and Paolo Masciullo

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages