│ # CLUSTERING
│ # Clustering-related classes built from scratch.
├── clustering
│ # KMeans class
│ ├── kmeans.py # KMeans class
│ └── kmedoids.py # KMedoids class
│
│ # DATASETS
├── datasets
│ ├── advertising.csv
│ ├── cancer.csv
│ ├── cardio.csv
│ ├── glass.csv
│ ├── houses.csv
│ ├── insurance.csv
│ ├── petrol_consumption.csv
│ ├── student_scores.csv
│ ├── transfusion.csv
│ └── wine.csv
│
│ # ESTIMATORS
│ # sci-kit learn "equivalent" estimators built from scratch.
│ #
│ # FBGD => Full-Batch Gradient Descent
│ # SGD => Stochatsic Gradient Descent
│ # MBGD => Mini-Batch Gradient Descent
│ # OLS => Ordinary Least Squares (Normal Equation method)
│ # clf => classification task
│ # reg => regression task
├── estimators
│ │ # linear regression classes
│ ├── linear_regression
│ │ ├── fbgd_linear_regression.py
│ │ ├── mbgd_linear_regression.py
│ │ ├── ols_linear_regression.py
│ │ └── sgd_linear_regression.py
│ │ # logistic regression classes
│ ├── logistic_regression
│ │ ├── fbgd_logistic_regression.py
│ │ ├── mbgd_logistic_regression.py
│ │ └── sgd_logistic_regression.py
│ │ # neural netowrk classes
│ └── neural_network
│ ├── fbgd_clf_neural_network.py
│ └── fbgd_reg_neural_network.py
│
│ # HELPERS
│ # other helpful classes or methods built from scratch.
├── helpers
│ ├── grid_search_cv.py
│ ├── normalization.py
│ └── sigmoid.py
│
│ # MAIN
│ # Main files in which supervised and unsupervised learning tasks are performed.
│ # Classes built from scratch and sci-kit library has been adopted.
├── main
│ ├── anomaly.py
│ ├── clustering.py
│ ├── grid_search_log_reg.py
│ ├── houses.py
│ ├── nn_clf_main.py
│ ├── nn_reg_main.py
│ ├── pca.py
│ ├── petrol_consumption.py
│ └── student_scores.py
│
│ # METRICS
│ # Model evaluation utilities built from scratch.
└── metrics
├── classification_metrics.py
├── metrics_evaluation.py
├── regression_metrics.py
└── roc.py
Thanks to Federico Carrozzino, Giovanni Silvestri and Paolo Masciullo